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Abstract 

Background Chronic kidney disease (CKD) is a common comorbidity in people with diabetes mellitus, and a key 
risk factor for further life‑threatening conditions such as cardiovascular disease. The early prediction of progression of 
CKD therefore is an important clinical goal, but remains difficult due to the multifaceted nature of the condition. We 
validated a set of established protein biomarkers for the prediction of trajectories of estimated glomerular filtration 
rate (eGFR) in people with moderately advanced chronic kidney disease and diabetes mellitus. Our aim was to discern 
which biomarkers associate with baseline eGFR or are important for the prediction of the future eGFR trajectory.

Methods We used Bayesian linear mixed models with weakly informative and shrinkage priors for clinical predictors 
(n = 12) and protein biomarkers (n = 19) to model eGFR trajectories in a retrospective cohort study of people with dia‑
betes mellitus (n = 838) from the nationwide German Chronic Kidney Disease study. We used baseline eGFR to update 
the models’ predictions, thereby assessing the importance of the predictors and improving predictive accuracy com‑
puted using repeated cross‑validation.

Results The model combining clinical and protein predictors had higher predictive performance than a clinical only 
model, with an R2 of 0.44 (95% credible interval 0.37–0.50) before, and 0.59 (95% credible interval 0.51–0.65) after 
updating by baseline eGFR, respectively. Only few predictors were sufficient to obtain comparable performance 
to the main model, with markers such as Tumor Necrosis Factor Receptor 1 and Receptor for Advanced Glycation 
Endproducts being associated with baseline eGFR, while Kidney Injury Molecule 1 and urine albumin‑creatinine‑ratio 
were predictive for future eGFR decline.

Conclusions Protein biomarkers only modestly improve predictive accuracy compared to clinical predictors alone. 
The different protein markers serve different roles for the prediction of longitudinal eGFR trajectories potentially 
reflecting their role in the disease pathway.
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Background
The prevalence of metabolic syndrome and diabetes 
mellitus (DM) is on the rise worldwide in adults, ado-
lescents and even in children [1–4]. Chronic kidney 
disease (CKD) is a common comorbidity in these peo-
ple, and a key risk factor for life limiting conditions 
such as arterial hypertension and cardiovascular dis-
ease. In the last decade effective treatments emerged 
that reduce the risk of progression for CKD [5–7], mak-
ing an accurate, early prediction of the highly variable 
individual decline of kidney function in terms of esti-
mated glomerular filtration rate (eGFR) an important 
clinical goal. The combination of clinical predictors 
with plasma biomarkers was found to improve predic-
tive accuracy for individual eGFR loss in early stages 
of the disease, but so far showed limited clinical util-
ity [8–19]. Furthermore, few studies addressed how 
the biomarkers contributed to the predictions. Kidney 
Injury Molecule 1 (KIM1) for example has been shown 
in experimental models of kidney injury and human 
studies to be an intrinsic kidney injury marker whereas 
other markers such as Tumor Necrosis Factor Receptor 
1 (TNFR1) represent filtration markers even in settings 
without intrinsic kidney damage [20, 21]. Therefore, it 
is likely that different biomarkers contribute differently 
to the prediction of longitudinal eGFR trajectories, i.e. 
some may be strongly associated with values close to 
the baseline, while others may be predictive for future 
eGFR decline.

To better understand the roles of established plasma 
biomarkers the specific aims of our study were to vali-
date and discern predictors associated with baseline 
eGFR and future eGFR decline, as well as to assess their 
predictive abilities in combination with clinical predic-
tors. We made use of Bayesian linear mixed models to 
analyze data from persons with diabetes in the German 
Chronic Kidney Disease (GCKD) study, one of the larg-
est prospective cohort studies of people with moderately 
advanced CKD [22].

Methods
Study design and outcome of interest
We determined eGFR according to the CKD-EPI creati-
nine equation [23]. To validate the set of selected protein 
biomarkers, our first objective was to use baseline values 
of biomarkers and clinical predictors to prognosticate 
the entire longitudinal eGFR trajectory, thereby assessing 
the predictive capabilities of these data independently of 
baseline eGFR. To discern the roles of the predictors, our 
second objective was to elucidate the added long-term 
predictive capabilities of the biomarkers on top of base-
line eGFR, which is most relevant to clinical practice.

Study cohort
We analyzed the subcohort of people with DM in the 
GCKD study, a prospective observational nationwide 
cohort study in Germany of people under regular neph-
rological care without the need for kidney replacement 
therapy [22]. The study did a long-term observation 
with yearly visits, alternating between in person visits 
and telephone interviews until year six. It is one of the 
world’s largest long-term observational CKD cohort 
studies with more than 5000 patients enrolled between 
March 2010 and March 2012.

The inclusion criteria for the GCKD study were an 
eGFR of 30–60  ml/min/1.73m2 or an eGFR > 60  ml/
min/1.73m2 with overt albuminuria (defined as albu-
min excretion > 300  mg/g creatinine, protein excre-
tion > 500 mg/g creatinine, or corresponding values for 
24  h urinary excretion). Exclusion criteria comprised 
non-Caucasian ethnicity, solid organ or bone marrow 
transplantation, active malignancy within 24  months 
prior to screening, heart failure of New York Heart 
Association Stage IV, and inability to provide con-
sent. Due to limitation on sample availability, the first 
in-person follow-up visit two years after enrolment 
into the GCKD study was referred to as “baseline”, and 
defined time zero for all computations of observation 
times in the remainder of this manuscript. Additional 
inclusion criteria for our study cohort on top of those 
for the GCKD study were diagnosis of DM, an eGFR of 
25–70  ml/min/1.73m2 to reflect the natural decline of 
eGFR between enrolment into GCKD and our analy-
sis baseline, and at least one eGFR measurement post-
baseline to contribute to our longitudinal outcome of 
interest. Persons were defined as diagnosed with DM 
if they had an HbA1C measurement of at least 6.5%, 
or if they had a prescription for at least one drug used 
to treat DM comprising a compound from any class 
starting with code “A10” (“Drugs used in diabetes”) 
according to the Anatomical Therapeutic Chemical 
Classification System [24]. At our baseline, data from 
4245 people between 24. January 2012 and 25. Octo-
ber 2019 (data lock) were available, including 1332 with 
DM. We provide an overview of participant inclusion 
in Fig. 1.

Clinical predictors
We analyzed several common clinical predictors: age, 
sex, body mass index (BMI), smoking status (never / 
ever), mean arterial pressure (MAP), serum cholesterol, 
urine albumin-creatinine-ratio (UACR), hemoglobin 
A1C  (HbA1c), hemoglobin, intake of blood pressure low-
ering medication, antidiabetic medication, and lipid low-
ering medication.
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Protein biomarker selection and measurement
We selected 19 protein biomarkers from a pool of can-
didates with prior evidence for an association with renal 
function derived from two recently published studies by 
Niewczas et al. and Gerstein et al., as well as earlier anal-
yses within the BEAt-DKD and RHAPSODY consortia 
[10, 12, 13, 15]. We maximized the number of biomarkers 
that could be measured using a single sample aliquot by 
optimizing the selection regarding the availability of mul-
tiplexed Luminex and ELISA assays.

A Human Premixed Multi-Analyte Luminex Kit (RD-
LXSAHM-13, R&D Systems, Minneapolis, USA) was 

used to measure 13 serum biomarkers with 1:2 sample 
dilution: Alpha 1-Microglobulin, Angiopoietin-2, C–C 
motif Chemokine 11 (CCL11), C–C motif Chemokine 
15 (CCL15), Chemerin, Fas, Fas Ligand, Growth Dif-
ferentiation Factor 15 (GDF15), Interleukin 1 Recep-
tor Type 1 (IL1R1), Matrix Metallopeptidase 7 (MMP7), 
Receptor for Advanced Glycation Endproducts (RAGE), 
TNFR1, and u-Plasminogen Activator (uPA). An addi-
tional Human Premixed Multi-Analyte Luminex Kit 
(RD-LXSAHM-05, R&D Systems) was used to measure 
five serum biomarkers with 1:50 sample dilution: Angi-
opoietin-1, C–C motif Chemokine 5 (CCL5), C–C motif 
Chemokine 14 (CCL14), Galectin-3 and Myoglobin. 
Assays were processed following the protocol provided 
by the manufacturer and measured on a Luminex 200 
(Luminex Corporation, Austin, USA) using the xPonent 
software (Luminex Corporation) with settings recom-
mended in the protocol.

Additionally, KIM1 was measured using an ELISA 
(RD-DSKM100, R&D Systems). A 1:2 sample dilution 
was applied and the assay was processed according to the 
manufacturer’s protocol. Optical density was determined 
using a  TriStar2 LB 942 Modular Multimode Microplate 
Reader (Berthold Technologies, Bad Wildbad, Germany) 
with the MikroWin2010 software (v5.21, Berthold Tech-
nologies) set as instructed in the assay protocol.

All samples were measured as technical replicates. A 
coefficient of variation (CV) ≤ 15% was required for a 
measurement to be considered valid. Incurred sample 
reruns of > 10% of all measured samples were performed 
on different plates, requiring an inter-plate CV of < 20% 
to consider the measurements as valid. Three qual-
ity control samples (high, medium, low concentration) 
diluted from the supplied high standard of each assay 
were included on each measured plate.

Concentrations from raw fluorescence signals out-
side of the standard range were truncated to fixed values 
(1/√2 times the lowest or √2 times the highest respec-
tive standard value). The measurement with smallest CV 
was preferred when multiple measurements were avail-
able due to reruns.

Statistical analysis
We report the cohort demographics by medians and 
interquartile ranges (IQR) for continuous variables, as 
well as by absolute and relative frequencies for discrete 
variables.

General modeling strategy
We analyzed the longitudinal eGFR trajectories using 
Bayesian multivariable linear mixed models (BLMM). 
Such models allow to discern the main term mod-
eling overall eGFR levels (baseline coefficient), and an 

Fig. 1 Flowchart of participant inclusion
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interaction term with observation time modeling the 
eGFR decline (slope coefficient) for each independent 
variable [25]. Person-specific trajectories were modelled 
using random intercepts and slopes. We fitted several 
BLMM comprising different variable sets as fixed effects. 
First, univariable BLMM using single protein biomarkers 
to assess the univariable association with eGFR. Second, 
the clinical BLMM using only clinical predictors to serve 
as a reference model in terms of prediction performance. 
Third, the main BLMM combining clinical predictors and 
biomarkers. All models also included observation time 
and interaction terms with time to model eGFR decline. 
The univariable and clinical BLMM used weakly informa-
tive Student-t distributions as coefficient prior distribu-
tions, while the main BLMM used regularized Horseshoe 
prior distributions to enforce sparsity and shrink the 
effects of unimportant variables towards zero [26, 27]. 
All variance parameters used weakly informative priors. 
We assessed the choice of hyperparameters via sensitivity 
analyses. Model convergence was evaluated by graphical 
inspection of the Markov chain traceplots, the R̂ statis-
tic and other sampler diagnostics [28, 29]. We assessed 
model fit via the normality of residuals and calibration 
plots.

All biomarker levels and UACR were log2-transformed 
during modeling to achieve more symmetric distribu-
tions. For comparability, coefficients are reported on a 
standardized scale corresponding to units of standard 
deviations, and are given as summaries of the model pos-
teriors, i.e. the median of the distribution and a 95% 
equal tailed Bayesian credible interval (BCI). These inter-
vals represent a contiguous region that contains the 
unobserved coefficient value with 95% probability, given 
our modeling assumptions. Model prediction perfor-
mance via marginal predictions using only fixed effects 
was assessed in terms of the explained variation R2 and 
the adjusted R2 (computed as 1− (1−R2) (n−1)

n−p−1
 , with n the 

number of observations, and p the number of fixed 
effects), as well as the root mean squared error (RMSE). 
We used 5-times repeated fivefold cross-validation to 
estimate the out-of-sample performance.

Model update by baseline eGFR
Each model included baseline eGFR as part of the lon-
gitudinal outcome (objective 1). However, to reflect 
the practical use of the models (objective 2) we incor-
porated baseline eGFR for predictions of future (post-
baseline) eGFR for unseen individuals by updating the 
random coefficient posteriors, i.e. computing the best 
linear unbiased predictors of the random effects condi-
tional on the observed baseline values [30]. Thereby we 
prevented over-optimistic model fit when using baseline 
eGFR as independent variable, but still gained improved 

prediction performance for the future eGFR trajectory. 
This also allowed us to elucidate the impact of baseline 
eGFR on the model’s predictions.

Variable importance
We assessed the importance of predictors in the main 
BLMM for both objectives by ordering them by the 
increase in cross-validated RMSE when removing a sin-
gle variable from the full main model and its updated 
version. Subsequently, we used this ordering to obtain a 
sequence of nested submodels of the main model, which 
provide predictions that become incrementally better 
approximations of the main model predictions as vari-
ables are added one-by-one. In detail, we started with a 
model comprising only the intercept and observation 
time, and then added more variables (main term and 
interaction with time) according to the ordering by cross-
validated RMSE to obtain incrementally larger models. 
We computed the submodel predictions using a refer-
ence model based projection approach [31–33]. Due to 
the impact of baseline eGFR the orderings for both objec-
tives differed, discerning the importance of variables as a 
replacement of baseline eGFR, and for predicting future 
eGFR in addition to baseline eGFR.

Missing data
We used multiple imputation with 20 imputations to 
account for missing data. All models were fitted in each 
imputed dataset, and the resulting posteriors pooled to 
obtain a single posterior incorporating the additional 
uncertainty due to missing data.

Implementation details
We used the R statistical software (version 4.0.4) for all 
analyses, implementing the BLMM in Stan (version 
2.21.0) accessed via the brms package (version 2.16), and 
the multiple imputation using the mice package (version 
3.13) [34]. We provide additional details in the extended 
Statistical Methods in the Supplementary Material, and 
considerations regarding sample size in Additional file 1: 
Figure S1.

Results
In total, we measured 19 protein biomarkers at baseline 
in 838 people with DM (predominantly Type 2 DM). 
Demographics of our study cohort are presented in 
Table  1. For most participants two post-baseline eGFR 
measurements were available (n = 525, 63%), and the 
median observed follow-up after baseline was 3.9  years 
(IQR [3.5, 4.1]). Overall loss-to-follow-up in the GCKD 
cohort was low: 45 persons (5%) from our subcohort 
died during follow-up and 9 (1%) dropped out due to 
other reasons. The median decline in eGFR, estimated 
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via person-specific regression models, was -0.8  ml/
min/1.73m2 per year (IQR [− 3.0, 1.1]).

Measured protein biomarker concentrations used in 
the analysis are depicted in Additional file  1: Figure S2. 
The proportion of missing biomarker measurements was 
low at around 3%. We provide an overview of biomarker 
availability, truncation and measurement issues in Addi-
tional file 1: Tables S1 and S2. The Spearman correlation 
(Additional file  1: Figure S3) between clinical variables 
(except creatinine and eGFR) and biomarkers was gen-
erally low (median 0.03, IQR [− 0.02, 0.07]). In contrast, 
the correlations between biomarkers and creatinine 
(0.25 [0.09, 0.35]) or eGFR (− 0.30 [− 0.38, − 0.12]) were 
higher in magnitude.

Models for eGFR
All BLMM reported in the following showed satisfactory 
convergence (Additional file  1: Table  S3) and model fit 
(Additional file  1: Figure S4 shows the main model fit). 
The results reported here remained unchanged in all our 
sensitivity analyses (see Extended Statistical Methods in 
the Supplementary Material).

Univariable protein biomarker models
In terms of median posterior adjusted R2 pooled across 
observation time, TNFR1 (0.30, 95% BCI [0.26, 0.33]) and 
RAGE (0.17 [0.14, 0.21]) showed the strongest associa-
tions with eGFR in univariable BLMM. All other mark-
ers had adjusted R2 values below 0.12, and most of them 
showed an association via their baseline coefficients (i.e. 

their 95% BCI excluded zero). For KIM1 (adjusted R2 
0.12 [0.09, 0.15]) the standardized slope coefficient had 
the greatest magnitude of all biomarkers, while for many 
other markers the association with eGFR trajectory was 
weak and their 95% BCIs included zero (Fig. 2).

Clinical reference model
The model using clinical predictors (12 in total) showed 
modest predictive performance for the whole eGFR tra-
jectory (objective 1). Its cross-validated median posterior 
R2 was 0.17 (95% BCI [0.11, 0.22], RMSE 11.79 [10.83, 
12.66]). Using baseline eGFR to update the model’s pre-
dictions (objective 2), the cross-validated performance 
for post-baseline eGFR values greatly improved with an 
R2 of 0.56 (95% BCI [0.47, 0.62], RMSE 9.00 [8.09, 10.31]). 
See Additional file 1: Table S4 for a breakdown of perfor-
mance by follow-up time.

Main model
The model combining clinical and biomarker predic-
tors (31 in total) had improved predictive performance 
compared to the clinical model for objective 1. Its pre-
dictions were well calibrated, indicating adequate model 
fit (Fig.  3 and Additional file  1: Figure S4). The cross-
validated median posterior R2 was 0.44 (95% BCI [0.37, 
0.50], RMSE 9.51, 95% BCI [8.60, 10.15]). Predictive per-
formance for post-baseline eGFR was further improved 
by updating with baseline eGFR for objective 2, with a 
cross-validated R2 of 0.59 (95% BCI [0.51, 0.65], RMSE 
8.80, 95% BCI [7.80, 9.95]). See Additional file 1: Table S4 
for a breakdown of performance by follow-up time. Many 
of the predictors’ coefficients were shrunken towards 
zero (Additional file 1: Table S5 and Additional file 1: Fig-
ure S5). In terms of magnitude, TNFR1 had the largest 
standardized baseline coefficient, followed by other pro-
tein biomarkers (RAGE, Myoglobin, CCL14, IL1R1) and 
age. Only few predictors showed a relevant slope coeffi-
cient, with KIM1 and UACR being by far the largest in 
magnitude.

Variable importance
The variable ordering is reported in Additional file  1: 
Table  S6 and the corresponding incremental submodel 
performances are shown in Fig. 4 for the cross-validated 
R2 (Additional file  1: Figure S6 shows cross-validated 
RMSE). The results corroborated the important roles of 
TNFR1, RAGE and age for objective 1, while KIM1 and 
UACR ranked as the most relevant predictors for objec-
tive 2 when incorporating baseline eGFR for predictions. 
This reflected their different roles for the prediction of 
eGFR trajectories: markers like TNFR1 and RAGE were 
relevant as a replacement of baseline eGFR and predic-
tive of values close in time to baseline, while KIM1 and 

Table 1 Cohort demographics of study patients with Diabetes 
mellitus (n = 838) at study baseline. Data are median and IQR 
for continuous variables, or absolute and relative frequencies for 
categorical variables

Variable Baseline value Missing

Age (years) 69 [62, 73] 0 (0%)

Sex (female) 287 (34%) 0 (0%)

Body mass index (kg/m2) 32 [28, 36] 1 (< 1%)

Smoking status (ever) 505 (50%) 1 (< 1%)

Mean arterial pressure (mmHg) 97 [90, 105] 2 (< 1%)

Serum cholesterol (mg/dL) 192 [164, 225] 0 (0%)

HbA1c (mmol/L) 53 [48, 61] 6 (< 1%)

HbA1c (%) 7.0 [6.6, 7.8]

Hemoglobin (g/dL) 13.7 [12.6, 14.8] 6 (< 1%)

Serum creatinine (mg/dL) 1.5 [1.3, 1.8] 0 (0%)

Urine albumin‑creatinine‑ratio (mg/g) 37 [9, 224] 18 (2%)

eGFR (mL/min/1.73m2) 42 [35, 51] 0 (0%)

Blood pressure medication (intake) 793 (95%) 0 (0%)

Diabetes medication (intake) 697 (83%) 0 (0%)

Lipid lowering medication (intake) 555 (66%) 0 (0%)
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UACR were predictive of the future eGFR decline. Only 
few predictors were sufficient to approximate the perfor-
mance of the full main model for both objectives, while 
the remaining predictors did not improve prediction per-
formance substantially and were largely exchangeable. 
This is particularly evident for the prediction of future 
eGFR decline, in which case only KIM1 and to a lesser 
extent UACR provided substantial added predictive value 
on top of baseline eGFR.

Discussion
In this study, we used Bayesian linear mixed modeling 
in a cohort of people with DM and moderately reduced 
eGFR to validate and discern the ability of a set of estab-
lished serum protein biomarkers to predict eGFR trajec-
tories. We found that in particular TNFR1 and RAGE 
contributed to the estimation of baseline eGFR values, 
while KIM1 and the clinical marker UACR were predic-
tive for the future eGFR decline. This is in line with the 
current understanding of these markers. TNFR1 con-
stitutes a marker of filtration, RAGE of general inflam-
matory response. On the other hand, KIM1 reflects 
kidney damage and thus plays an important role in the 
prediction of eGFR decline. Protein biomarkers slightly 
improved predictive performance in addition to clini-
cal predictors alone. Nevertheless, only few predictors 
were sufficient to achieve similar performance to the 
full set of predictors. Baseline eGFR had a strong impact 

on predictive performance on top of all other variables. 
Studies like ours, bringing together a strong set of poten-
tial predictors for eGFR and evaluating their perfor-
mance in a large cohort, are important to narrow down 
research efforts. Future work focused on improving our 
understanding of the most relevant protein biomarkers 
and their individual contributions to the prediction of 
eGFR decline may help to make them more clinically rel-
evant in the treatment of CKD in people with DM.

The results from this work corroborate conclusions 
from our earlier studies that many biomarkers were asso-
ciated with baseline eGFR, but that this association with 
eGFR diminished with increasing follow-up time [10, 
15]. This indicated that the clinical utility of the biomark-
ers remained low compared to eGFR. A possible excep-
tion would be KIM1, which consistently demonstrated 
added value for the prediction of eGFR trajectories on 
top of baseline eGFR across a wide population at different 
CKD stages. Furthermore, as TNFR1 showed the strong-
est association with baseline eGFR it may be relevant to 
refine the accuracy with which the current disease sta-
tus of an individual can be determined. Having multiple 
outcome related variables as opposed to a single meas-
urement increases the reliability of an individual’s dis-
ease diagnosis and reduces issues with replicability of the 
results.

The findings from our work are in line with other stud-
ies. The investigations by Niewczas et  al. and Gerstein 

Fig. 2 Standardized coefficients estimated by univariable Bayesian linear mixed models. The thin black bars indicate 95% Bayesian credible intervals 
for the coefficients; the thick black bars indicate 50% Bayesian credible intervals. The intersection point of the horizontal and vertical bars indicated 
by the point gives the values of the baseline and slope coefficients. The top‑5 biomarkers in terms of posterior median adjusted R2 pooled over 
all observation times are annotated in the graphic. Note the different x‑ and y‑axis scales. Most biomarkers are concentrated around the x‑axis, 
indicating an association with baseline eGFR, but weak association with the longitudinal eGFR trajectory
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et al. were used to define the pool of candidate biomark-
ers for our study [12, 13, 16]. While these studies also 
used selection techniques to identify markers important 
for predictions, they focused on the predictive abilities of 
the markers. On the other hand, our study tried to dis-
ambiguate the roles of the markers found in those studies 
in the prediction of longitudinal eGFR trajectories, which 
reflect their systemic biological functions.

The KidneyIntelX model was recently derived and 
validated as a prognostic tool for eGFR decline based 
on electronic health records, clinical predictors such 
as eGFR and the plasma biomarkers TNFR1, TNFR2 

and KIM1 [17]. The investigators evaluated the predic-
tions for a composite outcome of eGFR decline of 5 ml/
min/1.73m2 per year or more, 40% or more sustained 
decline, or kidney failure within five years in biobanked 
plasma samples from two cohorts. We identified similar 
biomarkers in this study and were able to discern how 
they affect predictions by using a longitudinal outcome 
rather than a classification outcome.

Other investigators evaluated the KidneyIntelX risk 
score for the prediction of therapy response on longitu-
dinal eGFR trajectories in a multinational cohort of peo-
ple with diabetic kidney disease [14]. Treatment with the 

Fig. 3 Calibration of posterior median of marginal predictions from the main model, before and after update by baseline eGFR values and stratified 
by time of observation. Overall, the calibration of predictions was satisfactory over the whole follow‑up period. Updating by baseline eGFR led to 
better calibration and prediction performance, as demonstrated by a more narrow spread around the diagonal line of perfect prediction, even for 
later follow‑up times. The evaluation is stratified by planned follow‑up times, actually observed follow‑up times used in the model differ slightly. 
Cross‑validated performances by follow‑up are reported in Additional file 1: Table S4
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SGLT-2 inhibitor was found to reduce the KidneyIntelX 
score over time, and changes in the score from baseline 
to one year were associated with disease progression. The 
baseline status of an individual was important as peo-
ple with higher baseline scores experienced more events 
compared to those with lower baseline scores. Therefore, 
an accurate diagnosis of the current disease state is rel-
evant to predicting future disease progression. Our work 
similarly corroborates the importance of baseline eGFR 
for predictions of future eGFR decline.

Recent investigations of data from the multinational 
CANVAS study, a randomized trial assessing the effect 
of the SGLT2-inhibitor Canagliflozin on cardiovascular 
and kidney outcomes, also focused on TNFR1, TNFR2 
and KIM1 as potential biomarkers [35, 36]. The studies 
found associations of TNFR1 and TNFR2 with progres-
sion of albuminuria, but did not show an association of 
KIM1 with albuminuria. Furthermore, Canagliflozin led 

to a modest attenuation of serum levels of TNFR1 and 
a decrease of KIM1 levels over time, indicating poten-
tial as markers for treatment response. The evidence 
from these studies complements our work, in which we 
found TNFR1 and KIM1 to be most promising candi-
dates for eGFR prediction from a broad set of established 
biomarkers.

Other studies established β2-microglobulin as another 
potentially interesting filtration marker for prediction of 
rapid renal function decline [19, 37]. While we did not 
measure this marker for our analysis, it was also shown to 
be highly correlated to TNFR1 (another marker of filtra-
tion) in these studies, which may serve as replacement in 
our analysis.

Our study has some limitations. The analysis cohort 
comprised people with mixed types of DM, but we can 
assume that most had type 2 DM. Our cohort baseline 
was the first in-person follow-up of the GCKD cohort 

Fig. 4 Approximation of main model by incremental submodels using the top 15 predictors, defined according to the ranking of variables by 
increase in cross‑validated RMSE. The dashed line (posterior median R2 ) and the dark and light grey shaded areas (50% and 95% BCI) indicate the 
full model performance in terms of cross‑validated R2 . For submodels, the points indicate the posterior median R2 , thick and thin bars give 50% and 
95% BCIs, respectively. The left panel depicts results when baseline eGFR is used as part of the longitudinal outcome vector, the right panel results 
when baseline eGFR is used to update predictions for post‑baseline eGFR. The variables used in the submodels increase from left to right, starting 
with Intercept and time, then adding the first predictor according to the ranking (TNFR1 and KIM1, respectively), then adding the next predictor 
(RAGE and UACR, respectively), and so on. In particular, in the right panel the results show the added predictive performance for the predictors on 
top of baseline eGFR. The ordering shown is the ordering obtained across all cross‑validation folds
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rather than the actual enrolment visit due to sample 
availability. This potentially introduced bias due to peo-
ple being lost to follow-up between the GCKD enrol-
ment and our baseline. The death rate was low and the 
demographics of our study cohort showed largely simi-
lar characteristics as expected from the actual GCKD 
inclusion criteria. For these reasons, we assume that the 
loss-to-follow-up is largely not associated with study 
outcomes, and that the impact on our analysis results 
is low. Due to the limited sample availability, there were 
fewer follow-ups per person available to our analysis. 
We attempted to mitigate associated problems of large 
intra-individual variability by the use of mixed models 
for longitudinal eGFR values as outcome, rather than 
modeling surrogate endpoints. The GCKD cohort is a 
national study with participants from Germany, there-
fore representing a Caucasian population. However, 
since our results are in accordance and extend several 
other studies, we believe the findings to be generaliz-
able to a broader population, or at least may foster fur-
ther research in other settings.

Strengths of our study include the almost complete 
follow-up of the GCKD cohort and the low amount of 
missing data. The serum biomarkers in our study were 
pre-selected via available prior evidence, thus repre-
senting a strong set of predictors for eGFR decline. The 
Bayesian analysis used shrinkage priors to identify impor-
tant predictors, while incorporating uncertainty about 
missing data and model fit. Furthermore, by updating the 
predictions by baseline eGFR we were able to discern for 
which parts of the longitudinal trajectory the variables 
were predictive, without being unduly influenced by the 
presence of baseline eGFR as independent variable.

In conclusion, we found that different serum protein 
biomarkers serve different roles for the prognostication 
of eGFR trajectories. These results may help to focus 
research efforts for such markers to improve understand-
ing of their functions in the pathophysiology of CKD in 
people with DM and to make them more relevant to clin-
ical applications.
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