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Abstract 

Background:  Coronary heart disease (CHD) and type 2 diabetes (T2D) are two complex diseases with complex inter-
relationships. However, the genetic architecture of the two diseases is often studied independently by the individual 
single-nucleotide polymorphism (SNP) approach. Here, we presented a genotypic-phenotypic framework for deci-
phering the genetic architecture underlying the disease patterns of CHD and T2D.

Method:  A data-driven SNP-set approach was performed in a genome-wide association study consisting of sub-
populations with different disease patterns of CHD and T2D (comorbidity, CHD without T2D, T2D without CHD and all 
none). We applied nonsmooth nonnegative matrix factorization (nsNMF) clustering to generate SNP sets interacting 
the information of SNP and subject. Relationships between SNP sets and phenotype sets harboring different disease 
patterns were then assessed, and we further co-clustered the SNP sets into a genetic network to topologically eluci-
date the genetic architecture composed of SNP sets.

Results:  We identified 23 non-identical SNP sets with significant association with CHD or T2D (SNP-set based associa-
tion test, P < 3.70 × 10−4 ). Among them, disease patterns involving CHD and T2D were related to distinct SNP sets 
(Hypergeometric test, P < 2.17 × 10−3 ). Accordingly, numerous genes (e.g., KLKs, GRM8, SHANK2) and pathways (e.g., 
fatty acid metabolism) were diversely implicated in different subtypes and related pathophysiological processes. 
Finally, we showed that the genetic architecture for disease patterns of CHD and T2D was composed of disjoint 
genetic networks (heterogeneity), with common genes contributing to it (pleiotropy).

Conclusion:  The SNP-set approach deciphered the complexity of both genotype and phenotype as well as their 
complex relationships. Different disease patterns of CHD and T2D share distinct genetic architectures, for which lipid 
metabolism related to fibrosis may be an atherogenic pathway that is specifically activated by diabetes. Our findings 
provide new insights for exploring new biological pathways.
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Introduction
Coronary heart disease (CHD) and type 2 diabetes (T2D) 
are two complex diseases driven by numerous additive 
and interacting genetic factors and in combination with 

the environment. The two diseases represented the most 
prevalent and burdensome non-communicable chronic 
diseases (NCDs). Making the issue more challenging, 
the co-occurrence of CHD and T2D is also common 
rather than random assortment of individual conditions 
[1]. Diabetes mellitus confers an approximately two-fold 
increased risk of coronary heart disease (CHD), which in 
return serves as a major contributor to death and disabil-
ity in T2D patients [2, 3]. Recent evidence also indicated 
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that cardiovascular risk in T2D patients is highly het-
erogeneous [4]. Therefore, precise joint management of 
CHD and T2D for identifying patients with various risks 
for comorbidity is at high priority in clinical practice.

Genetic etiology for the complex interrelationships 
between CHD and T2D remains incompletely under-
stood. Among the T2D patients, there has been shown a 
substantial genetic susceptibility for developing the sub-
sequent cardiovascular outcomes [5, 6]. Previous analyses 
also identified that the locus on GLUL, which is function-
ally related to glutamic acid metabolism, was associated 
with elevated cardiovascular risk specifically in diabetic 
individuals [7, 8]. To clarify CHD patients with or with-
out T2D, recent evidence further demonstrated a weak 
correlation of the genetic effects between CHD with T2D 
and CHD without T2D [9]. These initial observations 
indicated considerable distinctness in genetic architec-
ture between different disease patterns involving CHD 
and T2D, hence requiring integrative discovery.

Genetic architecture refers to the number, frequency, 
and effect sizes of genetic risk alleles and their interac-
tions with each other and the environment [10]. To 
understand genetic architecture, genome-wide asso-
ciation studies (GWAS) were conducted to determine 
the association between genomic DNA sequence vari-
ations and phenotypic variability, and have revolution-
ized the field of complex disease genetics over the past 
decade [10]. However, complex phenotypes present 
several challenges for the conventional analysis strategy 
based on additive models of individual variants, includ-
ing the presence of epistasis, pleiotropy, heterogeneity, 
and involvement of multiple loci with small effects [11]. 
These factors have made it difficult to explain the cumu-
lative functional effects of statistically associated loci and 
thus have limited the clinical predictive value of GWAS 
[12]. Accounting for the limitations, previous efforts have 
tried to group SNPs together for analyses over alterna-
tive tests of individual variants [11]. Major advantages of 
SNP-set analysis included replicability by alleviating the 
multiple testing burden, and the ability for handling com-
plex disease by considering multiple variants in linkage 
disequilibrium (LD) and potential interactions between 
SNPs [13]. Recently, an unsupervised machine learn-
ing approach termed PGMRA was proposed by Zwir 
et  al. for dissecting GWAS data into multiple SNP sets 
[14]. Of note, they demonstrated that genetic variants 
organized as clusters, acting in concert to influence het-
erogeneous traits [14–17]. On the other hand, Jorge et al. 
reported cumulative genetic effects associated with T2D, 
metabolic syndrome and obesity [18]. Their pioneering 
efforts provided adequate rationale for using the SNP set 
approach to specify complex interactive effects underly-
ing the polygenic risk of complex disease.

GWAS studies have advanced considerable under-
standing of the genetic architecture individually for T2D 
and CHD, yielding the discovery of several dozen loci 
for each disease [19, 20]. However, past studies failed to 
consider the two diseases holistically, thus ignoring the 
genetic effects underlying multiple subtypes of CHD 
and T2D. Furthermore, the traditional analysis strategy 
based on individual SNPs limited the ability for captur-
ing sufficient diversity of complex diseases distributed 
in subpopulations. Therefore, in the present study, we 
aimed to decipher the genetic architecture underlying 
multiple disease patterns involving CHD and T2D based 
on the SNP-set approach. Owing to the complex nature 
of both the phenotype and genotype, a genotypic-phe-
notypic architecture was raised for better decomposing 
their complex relationships (Additional file  1: Fig. S1). 
We used the unsupervised data-driven method to cluster 
SNP sets from CHD and T2D related variants and inves-
tigated their relations with different disease pattern sub-
groups of patients. We further topologically organized 
the interrelationships within SNP sets into genetic net-
works. It was postulated that the naturally joint relations 
between CHD and T2D were contributed by distinct but 
connected genetic architecture.

Materials and methods
Study participants
The study participants were included from the Fangshan 
Family-based Ischemic Stroke Study in China (FISSIC) 
[21]. FISSIC is an ongoing community-based case–con-
trol genetic epidemiological study that started in June 
2005, which enrolls families in Fangshan District, a rural 
area located southwest of Beijing, China. A total of 1229 
participants with available genomic data distributed 
across 513 families were recruited for the study. Our dis-
covery sample proceeded with 441 unrelated participants 
randomly selected from each family, excluding 317 sub-
jects with missing values for the diagnosis of CHD and 
T2D. The discovery sample consisted of 152 CHD and 
158 T2D patients, including 61 subjects with CHD and 
T2D comorbidity, 91 subjects with CHD alone, and 97 
subjects with T2D alone. The remaining 192 were control 
subjects with no CHD or T2D. We replicated the SNP set 
results in the remaining 471 subjects.

This study was approved by the Ethics Committee of 
the Peking University Health Science Center (Approval 
number: IRB00001052-13027), and written informed 
consent was provided by all participants.

Data collection
In the FISSIC study, baseline data including sociode-
mographic status, education, occupation, diet, lifestyle, 
health behavior, and medical history, of all participants 
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were collected through a face-to-face questionnaire 
survey by trained staff. The branchial-ankle pulse wave 
velocity (baPWV) values were tested with a BP-203 
RPE III automatic arteriosclerosis detection device 
(Omron Health Medical Co., Ltd., China).The pulse 
wave in the brachial artery and the posterior tibial 
artery pulse were measured using an automated oscillo 
metric method. baPWV was then calculated by divid-
ing the distance between two pulse wave measurement 
points by the time difference between two pulse waves. 
The larger the value, the higher the degree of arte-
riosclerosis. The detector automatically calculated and 
recorded the baPWV value, taking the average of the 
left and right baPWV as the baPWV value. For fasting 
blood glucose (fbg), after overnight fasting for at least 
12  h, a venous blood sample was obtained from the 
forearm of each participant. Serum or plasma samples 
were separated within 30  min of collection and were 
stored at –  80  °C for measurement. Laboratory tests 
were performed by qualified technicians from the Lab-
oratory of Molecular Epidemiology in the Department 
of Epidemiology at Peking University.

Disease definition
The presence of T2D and CHD was confirmed by a 
qualified physician. In particular, the diagnosis of CHD 
was based on one or more of the following: (1) history 
of confirmed CHD, including myocardial infarction, 
angina pectoris, and ischemic cardiomyopathy; and (2) 
use of drugs for controlling CHD. The diagnosis of T2D 
was based on one or more of the following: (1) self-
reported diabetes history; (2) hypoglycemic drug use; 
(3) fasting blood glucose (FBG) ≥ 7.0  mmol/L; and (4) 
two hours blood after glucose oral glucose tolerance test 
(OGTT) ≥ 11.1 mmol/L.

Genotyping
DNA was extracted using a LabTurbo 496-Standard Sys-
tem (TAIGEN Bioscience Corporation, Taiwan, China). 
In addition, the purity and concentration of DNA were 
measured using ultraviolet spectrophotometry. Genomic 
DNA samples were genotyped on the Illumina Asian 
Screen Array. After prephasing using shapeit2, genotypes 
were imputed via IMPUTE2 from the 1000 Genomes 
Project phase 3, version 5 reference panel. Genotyped 
data underwent quality control using PLINK (v1.90b4.9 
64-bit). Briefly, we excluded SNPs with missing rate ≥ 5% 
followed by the exclusion of SNPs with MAF ≤ 1%. We 
then removed SNPs with P-value < 1 ×10

−6 for Hardy–
Weinberg Equilibrium. Samples with missing call 
rate ≥ 5% were excluded from the analysis.

Statistical analysis
Identify SNP sets
Given genotype data from a GWAS represented as a 
matrix [SNPs × subjects], a SNP set is a submatrix com-
prised of a subgroup of subjects described by a par-
ticular subgroup of SNPs sharing distinct allele values 
[22]. To obtain comprehensive SNP sets with potential 
causal effects, we preselected SNPs for a loose associa-
tion (P values < 5× 10

−5 ) with a global phenotype of 
CHD or T2D using the logistic regression model (Addi-
tional file  1: Fig. S2). We postulated that the multiple 
combination of CHD and T2D represented the inte-
gration of the two diseases, but not a new phenotype. 
Therefore, we pooled 110 variants associated with CHD 
and 83 variants associated with T2D with no overlap 
together as the initial genotypic database (with herit-
ability of 43.2% and 38.2% respectively).

The nonsmooth nonnegative matrix factorization 
(nsNMF) method was conducted to enable an infer-
ence for SNP sets embedded in the SNP-Subject matrix 
(193 by 441) [23]. NMF decomposes the original matrix 
as a product of two matrices that are constrained by 
having nonnegative elements. Mathematically, this 
corresponds to finding an approximate factoring for 
Xm×n ∼ Wm×k ×Hk×n , where W is an m × k matrix 
that defines the decomposition model whose columns 
specify how much each of the subjects contributes to 
each of the k factors, and H is a k × n matrix whose 
entries represent the SNP allele values of the k fac-
tors for each of the n subject samples. By producing 
truly sparse components of the data structure, nsNMF 
achieves a satisfactory interpretability for the submatri-
ces within different factors.

To uncover the genetic architecture composed of SNP 
sets from different domains of knowledge, we repeat-
edly applied nsNMF to generate multiple clustering 
results using various numbers of factor initializations 
(2 ≤ k ≤ 

√

n , where n is the number of SNPs). This pro-
cess can be interpreted as unsupervised biclustering, 
since we avoid any assumption about the ideal number 
of submatrices as well as prior knowledge of the sub-
ject’s clinical status (control or case). Once the fac-
torization was done, the most representative features 
(SNPs) and observations (subjects) formed the SNP sets 
for each factor. It was performed by selecting the rows 
or columns with the highest values above a threshold, 
which was established as 60% of the highest value per 
row or column in the study. This selection process also 
contributes to fuzziness, where a subject or SNP can 
belong to multiple submatrices under each k. For each 
run of the basic factorization method (2 ≤ k ≤ 

√

n ), all 
SNP sets generated were named G_k_i, where 1 ≤ i ≤ k.



Page 4 of 13Xiao et al. Cardiovascular Diabetology          (2022) 21:276 

Description of the characteristics of SNP sets
A total of 135 possibly overlapping SNP sets were gener-
ated in the discovery samples. We considered three pos-
terior indicators for describing the SNP sets: the risk for 
CHD and T2D (percentage of cases among all subjects 
within a SNP set), SNP composition (percentage of SNPs 
associated with CHD or T2D in GWAS), and the direc-
tion of the effect (percentage of SNPs with protective or 
risk effects). Of 135 SNP sets, only 5% and 4% showed 
a merge of SNP group or SNP effect direction, which 
suggested that SNPs with the similar properties tend to 
group together.

Perform SNP‑set based association tests for SNP sets
Analyses for the association between each SNP set and 
disease phenotype was performed with the use of the 
SNP-Set Kernel Association Test (SKAT) [24]. This test-
ing framework allows for complex SNP interactions and 
nonlinear effects and thus has the power for detecting 
their joint activity. The age, age squared, gender, BMI and 
ancestry (10 PCs) of the subjects were used as covariates. 
We filtered out sets of SNPs that did not show statistical 
significance after adjusting for all possible generated sets 
(135, from 2 to 16).

Discover latent genotype–phenotype architecture 
and genotypic network
Phenotype sets were encoded as subgroups harboring 
subjects described by different disease patterns between 
CHD and T2D. To uncover the genetic architecture 
underpinning different disease patterns, 4 subgroups 
characterized by different disease patterns were identi-
fied: subjects with comorbidity of CHD and T2D, with 
CHD alone, with T2D alone, and with none of them. 
Among them, the comorbidity set and CHD alone set 
can exactly include all CHD patients in the study (and 
the same for T2D).We co-clustered SNP sets with pheno-
type sets into relations using the Hypergeometric test on 
intersected subjects [25].

Since the SNP sets were recurrently generated from 
different levels of factors, there were numerous highly 
overlapped/redundant SNP sets. We employed the Jac-
card coefficient (JC) to indicate the overlap of a pair of 
SNP sets in terms of SNPs or subjects. Two sets with 
overlapping SNPs or subjects over 0.8 (calculated by 
the Jaccard coefficient) were considered as redundant 
sets [26]. Optimization strategy was applied to select 
and assemble optimal, non-redundant SNP sets with 
the strongest association with phenotype sets using the 
P-value of Hypergeometric test as the measure of associ-
ation strength [14]. After simplifying, we checked for sig-
nificant relationships between SNP sets and phenotype 

sets based on the threshold using Bonferroni correction 
(P values < 2.17 ×10

−3 ). These relations characterize the 
genotypic-phenotypic architecture.

All reserved SNP sets were co-clustered by calculating 
the pairwise probability of intersected SNPs among them 
using the Hypergeometric statistics. This allowed us to 
characterize the relations among SNP sets and to iden-
tify SNP sets that were connected to each other by having 
certain SNPs in common, thereby composing genotypic 
networks.

Functional annotation and enrichment analysis
SNPs were mapped to likely affected genes using snpX-
plorer based on combined annotation dependent deple-
tion (CADD) score, expression-quantitative-trait-loci 
(eQTL) and variant position [27]. All possible molecular 
consequences of each SNP in the function of the gene 
were considered in the analysis. The cardiometabolic 
phenotype influenced by the genes within each SNP set 
was annotated by GeneCards [28]. To elucidate potential 
functional differences between different disease patterns, 
gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genome (KEGG) enrichment analyses were per-
formed using R’s clusterProfiler package [29]. Functions 
or pathways with significant enrichment were identified 
based on the criterion: adjusted P < 0.05.

Result
Identifying SNP sets as candidates for explaining 
the genetic etiology of CHD and T2D
We first applied nonsmooth nonnegative matrix factori-
zation method recurrently to investigate SNP sets with-
out prior biological knowledge. Our exhaustive search 
uncovered 23 nonidentical SNP sets, which varied in 
terms of allele value pattern and numbers of SNPs and 
subjects (Fig.  1; Additional file  1: Fig. S3). For example, 
G_7_4 contains 25 SNPs and 37 subjects, exhibiting a 
heterogeneous allele value pattern. Conversely, subjects 
in G_16_13 share relatively fewer SNPs (18 vs. 5), with all 
subjects holding the same interaction among a specific 
set of homozygotic alleles. Genome positions and molec-
ular consequences of variants also appeared to be diverse 
within SNP sets, for the SNPs can map to multiple classes 
of genetic variants dispersed across all the chromosomes 
(Additional file  2: Table  S1; Additional file  3: Table  S2). 
Specifically, there were multiple SNPs within a SNP set 
annotated by different genes (e.g., G_2_1), multiple SNPs 
within a SNP set jointly affecting the same gene in dif-
ferent ways (e.g., rs7259003 and rs34227821 in G_7_4 
with different consequences both mapped to KLK5), and 
different SNPs within different SNP sets mapped to the 
same gene (e.g., rs6134578 in G_10_7 and rs6078680 
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in G_4_1 both mapped to SPTLC3) (Additional file  6: 
Table S5).

For each SNP set, we continued to calculate the dis-
ease risk for CHD and T2D (percentage of cases in each 
set), SNP composition (percentage of SNPs associated 
with CHD or T2D in GWAS), and the direction of the 
effect (percentage of SNPs with protective or risk effects). 
There were 10 SNP sets comprised of SNPs associated 
with CHD, 7 comprised of SNPs associated with T2D 
and 6 SNP sets merged by SNPs from the two groups. 
Accordingly, 9 SNP sets were comprised of risk SNPs, 10 
were comprised of protective SNPs and the remaining 
4 SNP sets contained SNPs from both effect directions. 
Interestingly, it demonstrated a substantial interrelation-
ship between the above three aspects within SNP sets, 
that is the risk SNPs tended to cluster with cases of corre-
sponding disease while protective SNPs tended to cluster 
with controls (Fig. 1). As a result, variants with different 

properties integratively contributed to SNP sets charac-
terized by heterogeneous disease patterns of CHD and 
T2D. For example, G_2_2 and G_4_1 were both com-
posed of two groups of SNPs. However, G_4_1 with risk 
SNPs for both diseases yielded a higher proportion of 
subjects for CHD, T2D and their comorbidity, relative to 
G_2_2 with protective SNPs encoding mainly controls. In 
addition, one SNP set with risk loci for CHD can cohe-
sively gather subjects of having CHD without T2D and 
subjects with comorbidity.

SNP sets significantly associated with CHD and T2D
To capture the synergetic effect of multiple causal vari-
ants as well as possible epistatic effects within SNP sets, 
the association of SNP sets with coronary heart dis-
ease (CHD) and type 2 diabetes (T2D) was evaluated 
using the SNP-set Kernel Association Test (SKAT). All 
23 SNP sets were significantly associated with CHD or 

Fig. 1  Examples of Identified Single-Nucleotide Polymorphism (SNP) Sets Represented as Heatmap Submatrices. Six examples of SNP sets are 
represented as heatmap biclusters (see supplemental figure S3 for all SNP sets). Allele values are indicated as BB (dark blue), AB (intermediate 
blue), AA (light blue), and missing (gray). Subject status (i.e., cases and controls) is annotated at the top of the heatmap: cases in red and controls 
in green. SNP composition (associated with CHD or T2D) and SNP effect direction (risk or protective) are indicated as colored bars at the right side. 
Genotypic SNP sets were labeled by a pair of numbers representing the maximum number of clusters and the order in which they were selected by 
the method with a prefix G for genotype. A–C Illustrate SNP sets with different combinations of SNP composition and SNP effect direction, which 
contributed to varied risk for CHD and T2D. The SNPs within each SNP set can map to different genomic positions and exhibit distinct molecular 
consequences. D–F present pie charts of the percentage of SNPs within each SNP set that belong to different types of consequence (see Additional 
file 1: Fig. S4 for molecular consequence in each SNP set)
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T2D, reaching the significance threshold (3.7 × 10−4 ) 
set by Bonferroni correction for 135 generated sets 
(Table  1). Notably, SNP sets composed of variants for 
CHD and T2D also exhibited a significant association 
with either of the two diseases. 49 SNPs within G_2_1 
and 7 variants within G_9_2 were initially associated 
with CHD in GWAS, yet also showed a significant 
association with T2D by the SNP-set based test. These 
SNPs can be mapped to 16 genes that are responsible 
for cardiometabolic traits. Similarly, 28 variants in 4 
SNP sets mapped to 11 genes were found in relation to 
CHD through the SNP-set based test, with a loose asso-
ciation with T2D individually. Collectively, these results 
suggested the shared genetic architecture between 
CHD and T2D, in which some variants with small 
effects may jointly contribute to both CHD and T2D.

Disease risk (CHD or T2D) was the percentage of 
cases within each SNP set. SNP composition was the 
percentage of SNPs associated with CHD or T2D in 
GWAS. OR > 1 represents the percentage of risk SNPs 
in each SNP set.

Different disease patterns of CHD and T2D 
harbored distinct SNP sets, pathway enrichment 
and cardiometabolic trait levels
Next, we examined whether the SNP sets were related to 
different disease patterns of CHD and T2D. By combin-
ing genotypic and phenotypic information, we uncovered 
a complex relationship between them: the same SNP set 
could be associated with multiple clinical outcomes (plei-
otropy), while different SNP sets can relate to the same 
clinical outcome (heterogeneity). In addition, comorbid-
ity groups were only encoded by SNP sets comprised of 
a majority of risk loci, while both protective and risk SNP 
sets connected to the CHD without T2D group or T2D 
without CHD group. Particularly, it demonstrated that 
genetic architecture was distinctly distributed in different 
subgroups for comorbidity, CHD alone, and T2D alone, 
except for only one SNP set (G_12_5) related to two dis-
ease patterns (Fig.  2). Furthermore, after annotation, 
there were only 4 common genes between comorbidity 
and T2D without CHD, with no overlap between the two 
groups and CHD without T2D (Fig.  2). This result may 

Table 1  Single-nucleotide polymorphism (SNP) sets reported significant association with coronary heart disease (CHD) or type 2 
diabetes (T2D)

SNP set SKAT P values Subjects (N) SNPs (N) Disease risk (%) SNP composition (%) OR > 1 (%)

CHD T2D CHD T2D CHD T2D

G21 1.52E−03 8.76E−05 159 81 48 48 60 40 74

G22 2.79E−07 1.18E−01 70 34 26 29 50 50 0

G41 3.44E−04 5.19E−01 56 39 75 61 82 18 100

G55 2.79E−07 1.18E−01 53 24 6 58 100 0 0

G63 3.42E−04 7.08E−01 43 14 63 44 100 0 100

G74 1.33E−07 7.23E−01 37 25 16 51 100 0 0

G82 2.69E−05 7.12E−01 128 10 52 45 100 0 100

G84 2.12E−05 1.77E−01 42 14 26 62 71 29 29

G85 1.00E+00 3.84E−05 50 14 26 18 0 100 0

G92 3.09E−01 9.19E−06 42 10 31 43 70 30 30

G107 3.04E−01 1.49E−05 45 8 58 62 0 100 100

G125 5.97E−01 3.16E−05 73 6 42 62 0 100 100

G162 2.12E−05 1.77E−01 34 10 29 35 100 0 0

G164 2.79E−07 1.18E−01 23 17 9 52 100 0 0

G167 2.69E−01 2.12E−05 50 17 42 20 0 100 0

G168 2.79E−07 7.18E−01 24 15 17 29 100 0 0

G169 2.42E−05 1.28E−01 66 4 41 55 50 50 50

G1610 1.39E−01 7.36E−06 39 4 33 5 0 100 0

G1611 2.91E−05 6.06E−01 88 9 42 42 100 0 100

G1613 1.00E+00 7.54E−05 18 5 39 67 0 100 100

G1614 2.12E−05 1.18E−01 57 4 65 44 100 0 100

G1615 1.28E−01 3.17E−05 19 7 63 53 0 100 100

G1616 2.60E−05 5.60E−01 72 7 21 33 100 0 0
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suggest that the three groups (CHD with T2D, CHD 
without T2D, T2D without CHD) were differentially 
related to distinct gene profiles.

To gain further support for the biological distinctness 
represented by SNP sets within different disease patterns, 
we assessed the variants in SNP sets for enrichment of 

functions and signaling pathways (Fig.  2; Additional 
file 4: Table S3; Additional file 5: Table S4). Globally, we 
found that disease patterns harboring distinct SNP sets 
were also differentially associated with various biological 
processes (P < 0.05). Within comorbidity sets, the most 
enriched KEGG pathway was carbon metabolism while 

Fig. 2  Different disease patterns with distinct genetic architecture and pathway enrichment. A Heatmap of associations of SNP sets with disease 
patterns of CHD and T2D. Hypergeometric analyses were performed based on common subjects between two sets. *P < 2.17 ×10

−3 . The red bar 
indicates SNP sets composed of risk alleles, while the blue bar indicates SNP sets composed of protective alleles. Green bar corresponding to SNP 
sets containing variants for two effect directions. SNP sets for CHD variants are indicated in deep brown whereas SNP sets for T2D variants are 
indicated in light brown. B Venn plot showed the genes overlapping between different groups. C Significantly enriched KEGG pathways in different 
disease patterns. X-axis represents − log2(P-value). The comorbidity group is indicated in red, the CHD without T2D group is in orange and the T2D 
without CHD group is in green. D The top 5 significantly enriched GO terms within each disease pattern. E Comparison of levels of cardiometabolic 
traits between disease patterns of CHD and T2D
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the most enriched GO terms included metallopepti-
dase activity, collagen catabolic process and extracellular 
matrix organization. In comparison, the CHD without 
T2D group had distinct enrichment in glutamatergic syn-
apse for KEGG pathway and hippo signaling, ionotropic 
glutamate receptor and neuron functions for GO terms. 
The T2D without CHD group was most strongly enriched 
in metabolic pathways, including butanoate metabolism, 
beta-alanine metabolism and fatty acid metabolism. The 
GO terms demonstrated a distinct enrichment in serine-
type endopeptidase activity, serine-type peptidase activ-
ity and serine hydrolase activity. Interestingly, we also 
found a strong enrichment in immune functions within 
the T2D without CHD group. Collectively, we supposed 
that in each disease pattern, the SNP sets capture a differ-
ent disease mechanism and thus localize largely to spe-
cific and distinct functions and pathways.

We also assessed whether levels of cardiometabolic 
traits were varied within different groups. Notably, fast-
ing blood glucose (fbg) and branchial-ankle pulse wave 
velocity (baPWV) showed significant differences among 
comorbidity, T2D without CHD and CHD without T2D 
(P < 0.05, ANOVA). For instance, CHD patients with dia-
betes showed significantly higher levels of blood glucose, 
which may affect clinical treatment. Overall, our results 
addressed the importance of clarifying the presence of 
comorbidity in CHD and T2D patients.

Relations among SNP sets mapped to disease patterns 
and to gene products
To intuitively establish the genetic architecture con-
structed by SNP sets, we interconnected the SNP sets 
into an organized network based on shared SNPs (Fig. 3). 
Generally, it demonstrated the heterogeneity, distinctness 
and connectivity of the genetic architecture of disease 
patterns involving CHD and T2D. For the heterogeneity, 
we found 6 disjoint sub-networks among 16 SNP sets, in 
which one highly connected network associated with 10 
SNP sets, whereas four networks were composed of only 
a single isolated SNP set. In addition, within each disease 
pattern, the SNP-set networks were also disjoint.

Between different disease pattern groups, only two 
associations were identified, which additionally con-
firmed the distinctness mentioned above. Interestingly, 
there was a shared gene CBX3P7 between the 2_1 set for 
comorbidity and the 8_5 set for subjects with no CHD or 
T2D. We inferred that this was because they involved the 
same SNPs but with different allele values (both alleles of 
a SNP can act as risk alleles in different genetic contexts) 
in different subjects [17].

In addition to sparseness, SNP sets within each dis-
ease pattern can co-cluster together with significantly 

overlapping variants. Linked pathways connected the 
SNP sets through shared gene products previously asso-
ciated with cardiometabolic traits by GWAS. The emerg-
ing picture suggested that the disease patterns between 
CHD and T2D are a heterogeneous spectrum of diseases 
with some common genetic contribution in it.

Replication of SNP sets in the remaining sample
Since our work was based on SNP sets, we evaluated the 
replicability of SNP sets in the remaining sample, which 
contained 87 subjects of comorbidity, 133 subjects with 
CHD without T2D, 93 subjects with T2D without CHD 
and 158 subjects having none of them. We evaluated the 
matching between SNP sets generated from the discovery 
sample and from the remaining sample using the same 
193 variants. The probability of replication was measured 
by Hypergeometric test, with P-value = 0 considered as 
totally overlapped [26]. Remarkably, we found that 135 
of 135 SNP sets in discovery sample were also generated 
with few differences in remaining sample. We suggested 
that the high replicability was due to the SNP sets hold-
ing similar allele value patterns in different populations.

Discussion
In the present study, we performed an unsupervised, 
data-driven SNP set approach for uncovering the com-
plex genotypic-phenotypic architecture of CHD and T2D 
disease patterns. We identified 23 non-identical SNP sets 
harboring variants with different genomic locations and 
molecular consequences, which also varied in compo-
sition and effect directions. Based on the SNP sets, key 
findings from our study include: (i) joint effects of mul-
tiple SNPs may explain the underlying genetic pleiotropy 
between CHD and T2D; (ii) subgroups of individuals 
with different disease patterns shared distinct genetic 
basis, which also affected different biological pathways; 
and (iii) genotypic network composed of SNP sets further 
showed the sparseness between different disease patterns 
with the connectivity within each subtype. Our work 
provides new insights into the genetic etiology of CHD 
and T2D.

In practice, the choice of the SNP-set formation strat-
egy can influence the power of the approach [17]. Exist-
ing analyses grouped SNPs together into SNP sets based 
on a variety of genomic features such as physical location 
or biological functions [13, 30, 31]. However, it is reason-
able to expect that we can extract the joint information 
at both the gene-level and pathway-level to improve the 
power for detecting true effects [24]. Here, we generated 
SNP sets by decomposing the GWAS data into multiple 
submatrices characterized by particular allele value pat-
tern, and we suggested that this approach implied a more 
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basic logic that captures the structure of both genotype 
and phenotype in a specific population. Correspond-
ingly, we found a correlation between the SNP effect and 
the subject risk for T2D and CHD within each SNP set, 
which was ignored in Zwir’s study [14]. In addition, the 
SNP sets in our study can gather SNPs with different 
molecular consequences placed adjacently and mapped 
to the same gene. There were also SNP sets containing 
multiple genes that jointly enriched in the same func-
tional pathway. Collectively, it was proposed that the 
data-driven clustering strategy for forming SNP sets is 
biologically interpretable.

SNP set association detected shared genetic effects 
between CHD and T2D
GWAS studies have elucidated the shared genetic back-
ground and pathophysiology between coronary heart 
disease and type 2 diabetes [32]. A series of loci have 
been proven to be associated with both diseases, center-
ing on atherosclerotic plaque destabilization [33], insulin 
regulation [34], and triglyceride metabolism [35]. In the 
present study, we detected plausible pleiotropic effects 
for CHD and T2D based on the SNP-set strategy. The 
SNP-set based association test allows for potential epi-
static and nonlinear SNP effects, thus can substantially 

Fig. 3  Genotypic networks for disease patterns of CHD and T2D. The genotypic network is depicted as nodes (SNP sets) linked by shared SNPs. 16 
SNP sets significantly associated with phenotypic sets were topologically organized into 6 disjoint subnetworks, which suggested the heterogeneity 
in different disease subtypes. The edge width reflects the strength of overlap between two SNP sets computed by Jaccard’s coefficients. Shared 
genes enriched between two SNP sets are labeled on edges. The width of the node reflects the number of genes involved in each SNP set. A 
shows networks within SNP sets mapped to different SNP compositions. B presents SNP sets harboring different disease patterns. This network was 
visualized using Cytoscape 3.9.1
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improve the power for detecting the true joint effects 
of multiple variants [36]. Along this line, we found that 
multiple variants associated with T2D individually may 
jointly influence CHD and vice versa, which suggested 
widespread pleiotropic effects contributed by interac-
tive SNPs. Functional annotation further validated such 
pleiotropy. A total of 84 variants with plausible pleio-
tropic effects were assigned to 27 genes with a majority 
previously associated with cardiometabolic traits. For 
example, 6 pleiotropic loci within G_9_2 were annotated 
in CABP1, which was identified as risk gene for triglycer-
ide levels [37]. We concluded that multiple variants with 
modest effects can cohesively affect a broad cardiometa-
bolic basis for CHD and T2D. However, it can be argued 
that our results cannot distinguish biological pleiotropy 
and mediated pleiotropy, further validation by experi-
mental study is encouraged [38].

Distinct genetic architecture was related 
to comorbidity and CHD without T2D
Beyond the shared genetic basis between CHD and T2D, 
we additionally explored the genetic heterogeneity in dif-
ferent combinations of the two diseases. We uncovered 
the distinct but shared genetic architecture in four differ-
ent disease patterns (comorbidity, CHD alone, T2D alone 
and all negative).Previous studies have tried to identify 
variants modulating the susceptibility to CHD specifi-
cally in diabetic patients. However, to date, the results 
have been mixed, as both differences and similarities 
have been found between CHD patients with or without 
diabetes [7, 8, 9, 39, 40]. Our findings provide evidences 
that the genetic architecture between the comorbidity 
group and CHD without T2D group is distinct rather 
than similar.

For the comorbidity of CHD and T2D, we discovered 
a heterogeneous genetic architecture composed of 4 dis-
joint SNP-set networks and the different genetic under-
pinnings further participated in multiple cardiometabolic 
mechanisms. For example, metabolic pathways enriched 
in KEGG analysis, such as the carbon metabolism [41], 
propanoate metabolism [42], beta-alanine metabolism 
[43], pentose phosphate pathway [44], butanoate metabo-
lism [45], glycan degradation, and ubiquitin mediated 
proteolysis [46] all participate in the pathophysiology of 
CHD and T2D. Furthermore, we noted that the extra-
cellular matrix, collagen catabolic, and metallopepti-
dase activity for GO term enrichment were unique to 
the comorbidity group, which also jointly contributed to 
the development and progression of fibrosis in diabetic 
cardiomyopathy [47, 48]. Specifically, imbalance of met-
allopeptidase in diabetic patients plays a key role in extra-
cellular matrix modeling that favors fibrosis [48]. These 
results are noteworthy as they implicate cardiomyocyte 

fibrosis as a key pathological mechanism in the devel-
opment of the co-occurrence of CHD and T2D, with 
distinct genetic basis contributing to an increased sus-
ceptibility subjected to comorbidity.

Compared to comorbidity, having CHD without T2D 
showed a globally different genetic architecture, gather-
ing only one SNP-set with variants mapped to SHANK2 
and SHANK2-AS1. Genetic effects in this group appeared 
to be associated with the Hippo signaling pathway, which 
controls for lipid and glucose metabolism at both the 
cellular and organ levels [49]. It is also worth noting for 
the distinct enrichment in glutamate receptors and glu-
tamatergic synapses. Evidence from experimental and 
human studies has pointed to glutamine/glutamic acid 
metabolism as contributing to the regulation of insulin 
secretion and glucose metabolism [50]. Remarkably, Qi 
et  al. uncovered a diabetes-specific CHD loci function-
ally related to glutamic acid metabolism. A recent study 
may also support our results as they similarly discovered 
that the genetic effects linked with cardiac insulin resist-
ance can lead to altered myocardial structure in non-dia-
betic individuals [51]. Since there was no genetic overlap 
between the CHD without T2D group and the comorbid-
ity group, we suggested that the above effects were more 
sensitive to the CHD alone population. Furthermore, we 
speculated that the differentiation between comorbidity 
and CHD or T2D alone was conferred by two kinds of 
genetic effects: risk effects for comorbidity and protective 
effects for either of the diseases.

Distinct and shared genetic architecture 
was related to comorbidity and T2D without CHD
There was distinct but also connected genetic architec-
ture between comorbidity and T2D without CHD. For 
the distinctness, the genetic architecture of the T2D 
without CHD group comprised three disjoint SNP-set 
networks, with specific enrichment for fatty acid and 
branched-chain amino acids (BCAAs; isoleucine, leucine, 
and valine) metabolism. BCAA decomposition promotes 
fatty acid uptake and thus results in the accumulation of 
completely oxidized lipids and further the dyslipidemia 
[52]. Additionally, diabetic dyslipidemia and intra-myo-
cardial lipid accumulation perform as key pathologi-
cal features for diabetic cardiovascular disease [53]. GO 
enrichment in the T2D without CHD group was induced 
by profiles of KLKs, whose upregulation plays a distinct 
role in the pathogenesis of diabetic cardio endothelial 
damage and interacts with dysregulated lipid metabolism 
[54]. Collectively, our results may have clinical implica-
tions for preventing the development of CHD in T2D 
patients through targeting lipid acid metabolism.

For the similarities, firstly, there existed a SNP set char-
acterized by mixed patients with comorbidity and T2D 
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without CHD. Secondly, the two subtype groups shared 
4 genes and thus common pathways such as butanoate 
metabolism and propanoate metabolism. In addition, 
variants mapped to HMP19 and MSX2 were signifi-
cantly enriched between 8_4 set for T2D without CHD, 
2_1 set for comorbidity, and 12_5 set mixed for the two 
phenotypes, in which both genes have been reported to 
be associated with lipid measurement [55, 56]. Poten-
tially, the similarities of genetic effects between the two 
groups indicated that the pathophysiology of diabetes 
may be more critical for comorbidity, which is in part 
consistent with the fact that diabetes is a risk factor for 
coronary heart disease. Of note, as mentioned above, 
genetic effects for comorbidity were associated with 
fibrosis caused by diabetes. Given that fatty acid metabo-
lism characterizing the T2D without CHD group is also 
responsible for fibrosis, we thereby suggested that the 
cardiovascular fibrosis occurring in diabetes patients is a 
potential therapeutic target for preventing the comorbid-
ity of CHD and T2D.

Strengths
The major strength of this study was that we concerned 
the complexity for both phenotype and genotype. For 
phenotype, we integrated CHD and T2D to stratify sub-
populations with different disease patterns. For geno-
type, we performed a data-driven SNP-set approach to 
uncover the genetic architecture composed of multiple 
SNP sets with their interrelationships, accounting for 
joint effects of multiple variants. Combining the infor-
mation of phenotype and genotype, our methods raised 
a genotypic-phenotypic architecture for better under-
standing the heterogeneity in multiple combinations of 
complex disease.

Limitations
Several limitations should be acknowledged. Since SNP 
sets were generated by decomposing the GWAS data, 
the quality of the initial GWAS study was important for 
obtaining reliable results. Although we obtained robust 
replication for the SNP sets, a larger study would still 
be necessary for extending our results to a more gen-
eral population. In addition, our findings are based on 
cross-sectional associations, so the comorbid diagnostic 
trajectories were not taken into account. Although the 
mean age of our subjects was over 55  years old, there 
may still exist subjects with CHD or T2D alone who will 
progress into comorbidity in the future, which may bias 
our results. Additionally, we only considered two chronic 
diseases as CHD and T2D. However, multimorbidity, 
defined as the coexistence of at least two chronic diseases 
in an individual, has become an increasing global public 
health concern. Collectively, a large-scale prospective 

study covering more disease patterns within multiple 
complex diseases is desired in subsequent studies.

Finally, though our framework can decipher the com-
plex relationships between phenotypes and genotypes, 
a weakness of our data-driven approach was its lack of 
the power for effect size estimation and causal inference. 
Furthermore, since it was independent of any prior bio-
logical knowledge, the biological meaning of the find-
ings relied on the following functional annotation and 
literature support. Therefore, while our results described 
the distinctness and similarity underlying genetic archi-
tecture encoding different disease patterns, and showed 
plausible biological meaning by functional annotation, 
additional fundamental work is still required before these 
associations can be thought as fully established.

Conclusion
In summary, through a SNP-set approach, we demon-
strated the distinctness and heterogeneity in the genetic 
architecture of different disease patterns involving CHD 
and T2D. Risk genetic effects for comorbidity and pro-
tective genetic effects subjected to CHD or T2D jointly 
contributed to this distinctness. In clinical practice, treat-
ing CHD and T2D separately is thereby inadequate. Lipid 
metabolism related to fibrosis may be an atherogenic 
pathway that is specifically activated by diabetes. Further 
studies are needed for validation.
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