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Abstract

Background: It has been suggested that the antioxidant properties of olmesartan (OLM), an angiotensin II type 1
receptor (AT1R) blocker, contribute to renal protection rather than blood pressure lowering effects despite the fact
that causal relationships between hypertension and renal artery disease exist. This study aimed to examine the
hypothesis whether the antioxidative activities of OLM were correlated to arterial stiffness, reactive oxygen species
and advanced glycation end products (AGEs) formation in rats with chronic renal failure (CRF).

Methods: CRF rats were induced by 5/6 nephrectomy and randomly assigned to an OLM (10 mg/day) group or a
control group. Hemodynamic states, oxidative stress, renal function and AGEs were measured after 8 weeks of OLM
treatment.

Results: All the hemodynamic derangements associated with renal and cardiovascular dysfunctions were
abrogated in CRF rats receiving OLM. Decreased cardiac output was normalized compared to control (p <0.05).
Mean aortic pressure, total peripheral resistance and left ventricular weight/body weight ratio were reduced by
21.6% (p <0.05), 28.2% (p <0.05) and 27.2% ((p <0.05). OLM also showed beneficial effects on the oscillatory
components of the ventricular after-load, including 39% reduction in aortic characteristic impedance (p< 0.05),
75.3% increase in aortic compliance (p <0.05) and 50.3% increase in wave transit time (p< 0.05). These results
implied that OLM attenuated the increased systolic load of the left ventricle and prevented cardiac hypertrophy in
CRF rats. Improved renal function was also reflected by increases in the clearances of BUN (28.7%) and serum
creatinine (SCr, 38.8%). In addition to these functional improvements, OLM specifically reduced the levels of
malondialdehyde (MDA) equivalents in aorta and serum by 14.3% and 25.1%, as well as the amount of AGEs in the
aortic wall by 32% (p< 0.05) of CRF rats.

Conclusion: OLM treatment could ameliorate arterial stiffness in CRF rats with concomitant inhibition of MDA and
AGEs levels through the reduction of oxidative stress in aortic wall.
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Background
Increased arterial stiffness is associated with the devel-
opment and progression of chronic kidney disease
(CKD) [1,2]. The accumulation of advanced glycation
end products (AGEs) due to reduced capability of de-
toxification and excretion in CKD patients has been con-
firmed to worsen vascularpathy [3,4]. AGEs stiffen
collagen backbones [5], promote collagen deposition in
heart and aorta [6], increase the expression of growth
factors and cytokines [7] and induce inflammation [8].
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These products can consequently lead to glomerular and
tubulointerstitial injury. Satisfactory glycermic control,
which can reduce AGE accumulation, has been shown
effective on lowering arterial stiffness in diabetic patents
[9]. Angiotensin receptor blockers (ARBs) exhibit pleio-
tropic effects that prevent vascular stiffness [10-12]. Pre-
vious studies have demonstrated that ARBs have
renoprotective effects to reduce diabetic nephropathy
and complications, such as hyperfiltration, increased
intraglomercular pressure and urinary protein excretion,
in patients with or without diabetes [13,14]. ARBs
reduced AGE formation by blocking excess oxidative
stress has been verified in vitro [7]; however, the
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protective effect of ARBs on AGE formation remained
controversial in clinical study [15].
The effects of Olmesartan (OLM), a newest ARB, on

oxidative stress have been confirmed in a clinical study
of patients with diabetes [16]. Although it was suggested
that the antioxidant properties of OLM contribute to
renal protection rather than BP lowering effects [17], the
causal relationships between hypertension and renal dis-
ease exist [18,19]. A recent report indicated that OLM
decreased the time to the onset of microalbuminuria in
patients with type 2 diabetes [20]. Therefore, this study
aimed to examine the hypothesis whether the antioxida-
tive activities of OLM were correlated to arterial stiff-
ness, reactive oxygen species (ROS) and AGEs formation
by using 5/6 nephrectomy-induced CRF rats. Besides, we
also evaluated the effect of OLM on the renal function
by the measurements of serum creatinine (SCr) and
blood urea nitrogen (BUN).

Methods
Experimental Animals
Male Wistar rats (8 weeks old) were randomly divided
into three groups; (1) normal controls (NC), (2) CRF,
and (3) CRF treated with OLM (CRF +OLM). All rats
were allowed free access to water and chow (Rodent Diet
5001, PMI Lab, St. Louis, MO, USA) and housed in an
animal room with a 12-h light/dark cycle. All animal
experiments were conducted in accordance with the
Guide for the Care and Use of Laboratory Animals and
the protocols were approved by the Animal Care and
Use Committee of the National Taiwan University. The
rats were allocated randomly to 3 groups of 15 each: (1)
normal control (NC), (2) chronic renal failure (CRF),
and (3) OLM-treated CRF rats (OLM+CRF).

5/6 Subtotal Nephrectomy
Rat 5/6 subtotal nephrectomy (SNx) is a classic animal
model of CRF with enhanced activity of the renin-
angiotensin system. In this study, CRF was induced by
5/6 subtotal nephrectomy as previously described [21].
Under anesthesia with sodium pentobarbital (50 mg/kg;
i.p.), two branches of the left renal artery were ligated to
create an infarction after right nephrectomy. Rats in the
normal control group underwent sham surgeries. After
recovering for one week, CRF rats received daily oral
gavage with OLM (10 mg/kg/day) or placebo for the
next 8 weeks.

Aortic input impedance spectra
General surgical procedures and measurements of
hemodynamic variables in anesthetized rats were
described before [22]. Briefly, after anesthesia and intub-
ation, the rats were placed on a heating pad and venti-
lated with a rodent respirator (Model 131; New England
Medical Instruments, Medway, MA). The chest wall was
opened through the right second intercostal space. An
electromagnetic flow probe (Model 100 series, internal
circumference = 8 mm; Carolina Medical Electronics,
King, NC) was positioned around the ascending aorta to
measure the pulsatile aortic flow. A high fidelity pressure
catheter (Model SPC 320, size = 2 F; Millar Instruments,
Houston, TX) was used to measure the pulsatile aortic
pressure via the isolated carotid artery on the right side.
An electrocardiogram from lead II was recorded with a
Gould Electrocardiograph/Biotech amplifier (Gould
Electronics, Cleveland, OH).
The selected pressure and flow signals of 5–10 beats

were averaged in the time domain using the peak R wave
of the electrocardiogram as the fiducial point. Because of
the spatial distance between the flow probe and prox-
imal aortic pressure transducer, timing between the
pressure and flow signals was corrected by a time-
domain approach, in which the foot of the pressure
waveform was realigned with that of the flow [23]. The
resulting pressure and flow signals were subjected to fur-
ther vascular impedance analysis.
The aortic input impedance was obtained from the

ratio of the ascending aortic pressure harmonics to the
corresponding flow harmonics, using a standard Fourier
series expansion technique [22,24,25]. Total peripheral
resistance of the systemic circulation was calculated as
the mean aortic pressure divided by the mean aortic flow
rate. The aortic characteristic impedance was computed
by averaging the high-frequency moduli of the aortic
input-impedance data points (4th–10th harmonics)
[26,27].
After taking the aortic characteristic impedance into

consideration, we calculated the systemic arterial compli-
ance (C) at the mean aortic pressure (Pm) by expanding
the two-element Windkessel model into a three-element
model [28], which accounted for the nonlinear exponen-
tial pressure-volume relationship:

C Pmð Þ ¼ SVb
K þ ZCSV=Ad

� eb�Pm

eb�Pi � eb�Pd
;

where SV is the stroke volume, K is the ratio of total area
under the aortic pressure curve to the diastolic area (Ad),
Zc is the aortic characteristic impedance, b is the coeffi-
cient in the pressure-volume relationship (-0.0131± 0.009
in the aortic arch), Pi is the pressure at the time of inci-
sura, and Pd is the end-diastolic pressure.
The wave transit time can be computed by the impulse

response of the filtered aortic input impedance. This was
achieved using an inverse transformation of aortic input
impedance after multiplying the first 12 harmonics by a
Dolph-Chebychev weighting function of the 24th order
[29]. Then, the time-domain reflection factor was



Table 1 Comparisons of body weight, renal function,
blood pressure and left ventricular weight in the Wistar
rat 8 weeks after subtotal nephrectomy (SNx)

NC (n = 13) CRF (n= 14) CRF+OLM (n= 14)

mean± SE mean± SE mean± SE

BW (g) 480 ± 11.9 412.1 ± 16.6* 443.6 ± 10.5

BUN (mg/dl) 19.35 ± 0.8 64.76 ± 3.35* 46.79 ± 2.72†

SCr (mg/dl) 0.66 ± 0.02 1.7 ± 0.1* 1.04 ± 0.09†

Ps (mm Hg) 117.2 ± 2.2 178.5 ± 8.6* 135.7 ± 6.2†

Pd (mm Hg) 94.2 ± 2.3 126.9 ± 5.2* 101.8 ± 6.1†

Pm (mm Hg) 106.7 ± 2.3 152.1 ± 6.4* 119.2 ± 6.1†

PP (mm Hg) 23.0 ± 0.6 51.6 ± 4.4* 33.8 ± 2.2†

LVW (g) 0.98 ± 0.03 1.20 ± 0.04* 0.94 ± 0.05†

LVW/BW (%) 2.04 ± 0.05 2.9 ± 0.11* 2.11 ± 0.08†

NC, normal controls; CRF, chronic renal failure; OLM, olmesartan.
Abbreviations: BW, body weight; Ps, aortic systolic pressure; Pd, aortic diastolic
pressure; Pm, mean aortic pressure; PP, pulse pressure; LVW, left ventricular
weight. * : P< 0.05, CRF vs. NC; † :P< 0.05, CRF +OLM vs. CRF.
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derived as the amplitude ratio of the backward-to-
forward peak pressure wave using the method proposed
by Westerhof et al. [30]. Thus, both the wave transit
time and the wave reflection factor characterized wave
reflection phenomena in the vasculature.

Biochemical analysis
After 8 weeks, 15 rats from each group were catheter-
ized under anesthesia for measurements of vital signs.
Blood samples were collected directly via heart puncture
and serum was obtained by centrifugation and then
refrigerated until analysis. Rats were then thoroughly
perfused with iced phosphate buffered saline. Aorta and
heart samples were collected after scarification. Heart
samples were weighed and then cut into pieces either
for fixation in formalin or storage at –80°C. The levels
of SCr and BUN were measured with an autoanalyser
(Hitachi Model 7070, Hitachi Electronics Co., Ltd.,
Tokyo, Japan).

Immunohistochemical analysis
Aortic sections with thickness of 4 μm were used for
AGE staining. Briefly, tissue sections were deparaffinized
and hydrated through a series in xylene and graded alco-
hol (100%, 90%, 70%, and 50%). Sections were then trea-
ted with 3% H2O2/methanol and incubated in normal
horse serum (3%) for 20 min at room temperature, fol-
lowed by incubation with anti-AGE monoclonal anti-
body 6D12 (Trans Genic Inc., Kumamoto, Japan) (1:50
dilution) for 30 min at room temperature. After washing
3 times with PBS, diluted biotinylated “universal” sec-
ondary antibody (R.T.U. Vectastain Universal Elite ABC
kit, Vector Laboratories Inc., Burlingame, CA) was
added and incubated for another 30 min at room
temperature. The density was detected using avidin-
biotin-peroxidase (R.T.U. Vectastain Universal Elite
ABC kit, Vector Laboratories Inc., Burlingame, CA) and
diaminobenzidine (ImmPACT DAB Perxoidase Sub-
strate, Vector Laboratories Inc., Burlingame, CA) as sub-
strate; the sections were then counterstained with
hematoxylin.

Western blot analysis
The method used to determine collagen glycation in the
aortic wall was previously described by Turk et al [31].
After extensive digestion with pepsin, proteinase K, and
collagenase, the extracts from aortic walls were sub-
jected to a 12% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) using a Mini PRO-
TEANs 3 System (Bio-Rad Lab, Hercules, CA, USA).
Each sample contained 40 μg/μl of protein. The gels
were transferred to polyvinylidene difluoride membranes
and then incubated with an anti-AGE monoclonal anti-
body 6D12 (1: 2500 dilution) for 60 min at room
temperature, followed by using a chemiluminescence
method to determine densitometry using a Dolphin-
Chemi mini System (Wealtec Corp., Sparks, Nevada,
USA).

MDA measurement
The levels of MDA equivalents were determined by thio-
barbituric acid reactive substances (TBARS) assay kit
(Cayman Chemical Company, Ann Arbor, Michigan,
USA). Briefly, samples of an aorta or left ventricle were
homogenized in RIPA buffer (Sigma Chemical Co, St.
Louis, MO, USA) with a 1% protease inhibitor cocktail
(Sigma Chemical Co, St. Louis, MO, USA). After a brief
centrifugation at 1600 × g for 10 min at 4°C, the super-
natants were obtained for measuring absorbance at
540 nm.

Statistical analyses
Results are given as means ± standard errors (SD). Two-
way analysis of variance (ANOVA) was used to deter-
mine the effects of CRF and OLM on the physical prop-
erties of the rat arterial system. Simple effects analysis
was used when significant interactions between CRF and
OLM were found. Comparisons among means within
factor levels used Tukey’s honestly significant difference
method. P < 0.05 was considered to be significant.

Results
In comparison with the normal control, the CRF rats
yielded significant changes in renal function, arterial
pressure and left ventricular hypertrophy. Apart from
significantly lowering blood pressure, all the above ab-
normalities in CRF rats were effectively ameliorated after
8 weeks of OLM treatment (Table 1).
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In comparison with normal controls, CRF rats showed
significantly affected hemodynamics characterized by
decreased heart rate (396.26 ± 10.76 vs. 364.30 ± 10.02
beats/min, p <0.05) and cardiac output (2.30 ± 0.09 vs.
2.07 ± 0.09 ml/sec, p <0.05) (Figure 1A, B), and con-
versely, a marked increase in total peripheral resistance
(p < 0.05) (Figure 1D). The decrease in cardiac output
coupled with the increase in mean aortic pressure in
CRF rats (Table 1) caused a marked rise in total periph-
eral resistance. After 8 weeks of OLM treatment, CRF
rats were normalized as evidenced by increased cardiac
output (2.07 ± 0.09 vs. 2.28 ± 0.09 ml/sec, p <0.05) and
decreased total peripheral resistance (74.56 ± 3.43 vs.
53.52 ± 3.77, mmHg sec/mL, p <0.05) (Figure 1B, D).
Figure 2 depicts the aortic characteristic impedance

[32] and wave reflection factor (Rf ) from the CRF rats
were significantly increased than that from the controls
(0.54 ± 0.03 vs. 0.76 ± 0.03 mmHg sec/ mL, p < 0.05)
(Figure 2A, C). These changes were accompanied by the
decreases of aortic compliance (Cm) (13.50 ± 0.60 vs.
5.03 ± 0.46, p < 0.05, Figure 2C) and wave transit time (τ)
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Figure 1 Effects of OLM treatment on induced CRF rats and comparis
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(27.62 ± 1.02 vs. 16.26 ± 0.59 ms, p < 0.05, Figure 2D).
Treatment with OLM showed significant effects on
retarding the CRF-induced mechanical alterations in the
Windkessel vessels (Table 1), as manifested by the 39%
reduction in aortic characteristic impedance (Zc,
2.23 ± 0.21 vs. 1.36 ± 0.08, p < 0.05) and the 75.3% in-
crease in aortic compliance (Cm, 5.03 ± 0.46 vs.
8.82 ± 0.92, p <0.05). Early return with the augmented
magnitude of the reflected wave from the peripheral cir-
culation in CRF rats was impeded following OLM treat-
ment, as demonstrated by the increase of 50.3% in wave
transit time (τ, 16.26 ± 0.59 vs. 24.44 ± 1.76, p < 0.05).
There were significant changes in renal function as

shown by the differences in clearances of BUN and SCr
between normal rats and CRF rats (Table 1). At week 8
after the induction of CRF, the BUN was 3.3-fold and
SCr 2.6-fold higher in CRF rats than the controls
(p < 0.05), indicating an impaired renal function. We
observed significant increases in the clearances of both
BUN and SCr in the CRF rats following OLM adminis-
tration, of which BUN decreased by 28.7% (p < 0.05) and
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SCr 38.8% (P < 0.05) when compared to those without
treatment.
The immunointensity indicating AGE accumulation

was higher in the media aortic wall of CRF rats (Figure 3),
which was significantly reduced following OLM treat-
ment for 8 weeks. Consequently, the amount of AGEs
was 142% increased in collagen samples from CRF rats
compared with control samples, displaying a molecular
weight fragments between 26 and 34 KDa (Figure 4).
After treatment with OLM for 8 weeks, AGEs decreased
by 32% in glycation-derived modification of aortic colla-
gen (p < 0.05).
MDA is a biomarker of lipid-related oxidative stress,

which indicates the degree of lipid peroxidation. The
levels of MDA equivalents of the aorta and serum in
CRF rats were markedly increased than that of controls,
ranging from 1.50 ± 0.05 to 2.02 ± 0.04 nmol mg-1 pro-
tein (p < 0.05) in aorta and from 12.67 ± 1.13 to
17.01 ± 0.78 mM (p < 0.05) in serum (Figure 5). OLM
treatment prevented CRF-induced oxidative stress in
both aorta and serum, as evidenced by the reductions of
levels of MDA equivalents by 14.3% and 25.1%,
respectively.

Discussion
OLM is an ARB that is characterized by potent blood
pressure-lowering efficacy with a fast onset, prolonged
duration of action and good tolerability. Some clinical
studies have demonstrated that OLM has renoprotectve
function in patients with type 2 diabetes, and beneficial
effects to reduce cardiovascular risk in patients with ath-
erosclerosis [20,33]. Recent studies have also reported
that OLM is associated with a beneficial effect on lipid
metabolism [34], reduction of proteinuria [35], and pro-
tection of endothelial cell from the injuries induced by
oxidized LDL [36]. Our results added to the evidence
that OLM exerts beneficial influences on cardiovascular
disease and diabetes.

Impacts of OLM on cardiovascular functional parameters
All the arterial pressures, including aortic systolic blood
pressure, aortic diastolic pressure and mean aortic
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Figure 3 Immunohistochemical staining for advanced glycation
end products (AGEs) in the aortas at 8 weeks after SNx. NC,
normal controls; CRF, chronic renal failure; OLM, olmesartan.
Magnification 400x.
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pressure, significantly increased in CRF rats (Table 1).
Our data demonstrated that OLM showed significant
effects on lowering these increased pressures. The
pressure-lowering effect of OLM was partly due to its
antagonistic actions on Angiotensin-II type 1 receptor
(AT1R), which consequently inhibit vasoconstriction and
ameliorate hypertension [37].
A decline in cardiac output and an increase in mean

aortic pressure were associated with increased total per-
ipheral resistance in CRF rats (Figure 1D). The increase
in total peripheral resistance could have largely resulted
from vasoconstriction and arterial stiffening. In CRF
rats, ROS production via AT1R-mediated NADPH oxi-
dase activation and the reaction of superoxide [38], one
of the ROS, with nitric oxide (NO) generates peroxyni-
trite (ONOO-) and diminishes the vascular relaxation
activity of NO [39]. Apart from activating RAS, previous
studies have demonstrated that accumulated AGEs
reduced NO levels, caused increased vascular smooth
muscle tone [40], contributed to the cross-linking of gly-
cated collagen in the arterial walls of CRF rats [41] and
consequently led to increased arterial stiffness and total
peripheral resistance. The CRF-derived physical changes
in vessel resistance were ameliorated by OLM treatment,
as shown by a significant reduction (28.3%) in total per-
ipheral resistance. We therefore hypothesized that OLM
treatment would improve CRF-induced vasodilatory dys-
function by blocking the action of Angiotensin II and re-
ducing AGE formation.
Aortic characteristic impedance is frequently used as

an indicator of aortic stiffness. Higher aortic characteris-
tic impedance is associated with a stiffer aortic wall [40].
When compared to normal control rats, the aortic char-
acteristic impedance increased (Zc in Figure 2A) and
wave transit time decreased (τ in Figure 2D) in CRF rats.
Because the CRF-derived change in wave transit time
could be a consequence of a change in pulse wave vel-
ocity [40], our results suggested that a decline in aortic
distensibility had occurred in CRF rats.
The material properties of distensibility and compli-

ance (together known as the elastic modulus) are used to
describe the stiffness of a hollow vessel. Stroke volume
and aortic compliance can also affect the magnitude of
the pulse pressure. The arterial pulse pressure varies dir-
ectly with the stroke volume, but varies inversely with
the arterial compliance [40]. Our results showed
increased arterial pulse pressure in CRF rats (Table 1), no
significant change in stroke volume (Figure 1C) and
decreased aortic compliance (Figure 2B), which suggest
that the elevated arterial pulse pressure was associated
with the reductions in compliance and distensibility
and the aortic wall had stiffened. Decreased aortic disten-
sibility in rats with CRF was prevented by OLM adminis-
tration, as indicated by a 39% reduction in aortic
characteristic impedance and a 50.3% increase in wave
transit time. OLM treatment also increased the systemic
arterial compliance in CRF rats by 25.3%. The improve-
ment of the CRF-derived arterial stiffness implicated that
OLM may reduce the formation of glycated collagen in
the aortic wall.
Changes in timing or magnitude of the pulse wave re-

flection impair the loading condition of the left ventricle
coupled to its arterial system [40]. Our findings of
increased wave reflection factor (Figure 2C) and shor-
tened wave transit time (Figure 2D) indicated that CRF
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changed the timing and magnitude of the pulse wave re-
flection to augment the systolic load of the left ventricle.
The impaired systolic loading condition of the left ven-
tricle caused the heart to adapt by muscular hypertrophy
(Table 1). Furthermore, the increase in wave transit time
indicated that OLM prevented AGE accumulation in the
arterial wall collagen of CRF rats. OLM also improved
the systolic loading condition of the left ventricle
coupled to its vasculature system. The decreased ratio of
the left ventricular weight to body weight also suggests
that OLM treatment decreased vascular load and pre-
vented CRF-related cardiac hypertrophy.
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Figure 5 The levels of malondialdehyde (MDA) equivalents in the aor
MDA equivalents was observed in rats with CFR, and decreased in CRF rats
Effects of OLM treatment on the levels of AGE and MDA
A striking increase in the AGE content of aortic collagen
in CRF rats was observed in our study, suggesting that
AGE-modulated collagen led to aortic stiffness. We also
explored the histological evidence of considerable AGEs
accumulation increased by 142% on aortic tissue of CRF
rats (Figures 3C and 5C), and it was decreased by 32%
after OLM treatment for 8 weeks (Figures 3D and 5).
Our results that AGEs played an important role in vas-
cular dynamics were in agreement with previous studies
[42,43].
MDA is frequently measured as an indicator of lipid

peroxidation and oxidative stress [44] and increased in
patients with CKD [45]. Since oxidative stress was
involved in the formation of AGEs [46], it might be pos-
sible to attenuate AGE formation by inhibiting several
oxidative steps [11,47]. Some recent studies have proved
that OLM attenuated the level of MDA equivalents and
subsequently lessened the formation of AGEs in CRF
rats [3,48,49]. We verified the MDA-lowering effect
according to the levels of MDA equivalents decreased by
14.3% in the aorta and 25.1% in the serum after OLM
treatment. Both the formation of AGEs and MDA are
involved with oxidative processes producing their carbo-
nyls or dicarbonyls. The mechanism by which OLM
inhibits AGE formation was suggested to be associated
with its potentials to suppress carbonyl/dicarbonyl radi-
cals [11]. Furthermore, a previous report demonstrated
that treatment of Nx rats with OLM for 8 weeks signifi-
cantly reduced superoxide production [39]. Our findings
were consistent with these previous studies indicating
that the formation of AGEs is related to oxidative stress
and might be reduced by the antioxidant ability of OLM.
In addition, OLM possess renal protective properties via
ameliorating progressive glomerular injury [39,50]. The
findings of markedly increased excretion of BUN and
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SCr (Table 1) suggest that the improvement of renal
function may lead to reduced AGEs accumulation in the
serum of CRF rats.

Conclusion
Our findings demonstrated that OLM provides signifi-
cant protection against CRF-derived changes in the
mechanical properties of blood vessels, especially the
Windkessel vessels. The underlying mechanism is likely
to be involved with the reduction of oxidative stress
leading to subsequent decrease in the formation and ac-
cumulation of AGEs in arterial wall collagen. Other than
the pressure-lowering effect of vasodilation in OLM, the
inhibition of AGEs by OLM may be another pathway
contributed to the improvement of the CRF-derived de-
terioration of blood vessels in CRF rats. The results of
the current study must be also viewed in the context of
many other studies of renal and cardiovascular outcomes
that have shown beneficial effects of OLM.
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