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Abstract

Background: Although the Fat Mass and Obesity (FTO) and Melanocortin-4 Receptor (MC4R) genes have been
consistently associated with obesity risk, the association between the obesity-risk alleles with type 2 diabetes is still
controversial. In some recent meta-analyses in which significant results have been reported, the associations
disappeared after adjustment for body mass index (BMI). However gene-diet interactions with dietary patterns have
not been investigated. Our main aim was to analyze whether these associations are modulated by the level of
adherence to the Mediterranean Diet (MedDiet).

Methods: Case-control study in 7,052 high cardiovascular risk subjects (3,430 type 2 diabetes cases and 3,622
non-diabetic subjects) with no differences in BMI. Diet was assessed by validated questionnaires. FTO-rs9939609 and
MC4R-rs17782313 were determined. An aggregate genetic score was calculated to test additive effects. Gene-diet
interactions were analyzed.

Results: Neither of the polymorphisms was associated with type 2 diabetes in the whole population. However, we
found consistent gene-diet interactions with adherence to the MedDiet both for the FTO-rs9939609 (P-
interaction=0.039), the MC4R-rs17782313 (P-interaction=0.009) and for their aggregate score (P-interaction=0.006).
When adherence to the MedDiet was low, carriers of the variant alleles had higher type 2 diabetes risk (OR=1.21,
95%CI: 1.03-1.40; P=0.019 for FTO-rs9939609 and OR=1.17, 95%CI:1.01-1.36; P=0.035 for MC4R-rs17782313) than
wild-type subjects. However, when adherence to the MedDiet was high, these associations disappeared (OR=0.97,
95%CI: 0.85-1.16; P=0.673 for FTO-rs9939609 and OR=0.89, 95%CI:0.78-1.02; P=0.097 for MC4R-rs17782313). These
gene-diet interactions remained significant even after adjustment for BMI. As MedDiet is rich in folate, we also
specifically examined folate intake and detected statistically significant interaction effects on fasting plasma glucose
concentrations in non-diabetic subjects. However these findings should be interpreted with caution because folate
intake may simply reflect a healthy dietary pattern.
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Conclusions: These novel results suggest that the association of the FTO-rs9939609 and the MC4R-rs17782313
polymorphisms with type 2 diabetes depends on diet and that a high adherence to the MedDiet counteracts the
genetic predisposition.

Keywords: Nutrigenetics, Mediterranean diet, Diabetes, FTO, MC4R, Gene-diet interactions
Background
The Fat Mass and Obesity (FTO) and Melanocortin-4
Receptor (MC4R) genes are considered leading obesity-
associated loci [1-6]. Both genes have been found to be
highly expressed in the hypothalamus in rats [7] suggest-
ing a role in a role in the central regulation of energy
balance and appetite [7,8]. Although common variations
in these genes have been consistently associated with a
higher body mass index (BMI) and obesity risk in nu-
merous individual studies and meta-analyses [1-6,9-12],
the association of these variants with a higher type 2 dia-
betes risk has only recently come to the fore, and is still
highly controversial [9,13-24]. Regarding the FTO gene,
a recent meta-analysis [13] in East and South Asians,
concluded that the FTO rs9939609 minor allele (or a
proxy), the risk allele for obesity, increased the risk of
type 2 diabetes, this association remaining statistically
significant even after adjustment for BMI. Similar results
were reported in a Scandinavian population [14]. In con-
trast, other studies, despite finding a higher type 2 dia-
betes risk in carriers of the risk-allele for obesity,
concluded that this association disappears when adjust-
ing for BMI [1,25-27]. There are also several investiga-
tions in which no association with type 2 diabetes was
found [6,9,28-30]. Along these lines, a recent editorial
comment [24] stated that it is still unclear whether the
FTO is a diabetes-susceptibility gene and further data
are needed at this stage, recommending that, in future
studies, cases of type 2 diabetes and controls be paired
by BMI to better analyze the independent effects on the
two outcomes. Regarding the MC4R gene, there are
fewer studies that have analyzed the association between
the rs17782313 polymorphism (or a proxy) with type 2
diabetes than for the FTO gene, and the results are even
less conclusive [2,18,19,22,23,25,31].
Despite the numerous studies carried out in various

populations, it is surprising that none of the above men-
tioned [1-31] have specifically examined the influence of
the diet modulating the associations of the FTO and the
MC4R risk alleles with type 2 diabetes. The analysis of
this modulation is of great importance as it has been
reported that mice with increased fto expression did not
develop glucose intolerance when fed a standard diet
[32]. Interestingly, they developed glucose intolerance on
a high fat diet [32]. Likewise, MC4R knockout mice
exhibited increased adiposity and hyperinsulinemia and
sometimes, depending on diet, developed type 2 diabetes
[33]. Every day more importance is placed on the overall
food intake pattern on type 2 diabetes [34-36] and the
traditional MedDiet pattern, low in saturated fat and
rich in vegetables, fruits, legumes, fish, nuts and olive
oil, reduces type 2 diabetes incidence [36-38]. Then, out-
standing among the dietary factors that could modulate
the effect of the FTO rs9939609 and the MC4R
rs17782313 polymorphisms on type 2 diabetes, is the
Mediterranean diet (MedDiet). Furthermore, the Med-
Diet is rich in folates [39] and folate availability is crucial
for DNA methylation status [40]. Considering that dys-
regulation in DNA, methylation has been suggested as
one relevant epigenetic mechanism in type 2 diabetes
[41] and that both the FTO [42] and the MC4R [43]
genes are regulated by methylation, the MedDiet might
modulate the effect of these genes through epigenetic
mechanisms.
As there are no published studies either for the MC4R

or for the FTO genes that have analyzed their interactions
with MedDiet on type 2 diabetes, our main objective was
to evaluate whether adherence to the MedDiet pattern
modifies the association of the FTO rs9939609 and MC4R
rs17782313 polymorphisms with type 2 diabetes, either in-
dependently or jointly. Our secondary aim was to examine
the contribution of folate intake in this interaction.

Methods
Subjects
In a case-control study, we analyzed 7,052 participants
(3,430 cases with type 2 diabetes and 3,622 non-diabetic
controls) from the PREDIMED (PREvención con DIeta
MEDiterránea) trial from whom DNA was isolated, the
FTO rs9939609 determined, and who had valid data for the
main clinical and lifestyle variables analyzed at baseline.
These participants did not differ in the main characteristics
from those of the total cohort (n=7,447). In 7,019 of them,
the MC4R rs17782313 polymorphism was successfully
determined. The PREDIMED study (www.predimed.org) is
a multi-center clinical trial aimed at assessing the effects
of the MedDiet on the primary prevention of cardiovas-
cular disease (CVD) [44,45]. Participants were recruited
between 2003 and 2009 in Primary Care Centers
affiliated to 11 recruiting centers (teaching Hospitals) in
Spain. They were women (60 to 80 years) or men (55 to
80 years) without prior CVD, with type 2 diabetes
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(cases) or at least three of the following cardiovascular risk
factors in subjects without type 2 diabetes (controls):
current smoking, hypertension, elevated low-density lipo-
protein cholesterol, low high-density lipoprotein choles-
terol, overweight/obesity, or family history of premature
coronary heart disease. The specific cut-off points for these
eligibility criteria have been previously described [45]. Type
2 diabetes was diagnosed according to American Diabetes
Association criteria [46]. The duration of type 2 diabetes
was also recorded. The Institutional Review Board /Ethics
Committee of each participating center approved the study
protocol. All participants provided written informed
consent. The study is registered at http://www.controlled-
ttrials.com/ISRCTN 35739639.

Clinical, anthropometric and dietary measurements
A general questionnaire was administered at baseline as
previously reported [45]. Weight and height were directly
measured with calibrated scales and a wall-mounted
stadiometer, respectively. Body mass index (BMI) was cal-
culated as weight in kilograms divided by the square of
height in meters [45]. Registered dietitians completed a
validated 14-item MedDiet adherence questionnaire in a
face-to-face interview with each participant [47]. This
questionnaire consists of 14 questions on the frequency of
consumption of specific foods characteristic of the Spanish
MedDiet. Each question was scored 0 or 1. One point was
given for: 1) using olive oil as the principal source of fat
for cooking; 2) preferring white meat over red meat, or for
consuming: 1) 4 or more tablespoons of olive oil/d; 2) 2 or
more servings of vegetables/d; 3) 3 or more pieces of fruit/
d; 4) <1 serving of red meat or sausages/d; 5) <1 serving of
animal fat/d; 6) <1 cup of sugar-sweetened beverages/d; 7)
7 or more servings of red wine/wk; 8) 3 or more servings
of pulses/wk; 9) 3 or more servings of fish/wk; 10) fewer
than 2 commercial pastries/wk; 11) 3 or more servings of
nuts/wk; or 12) 2 or more servings/wk of a dish with a
traditional sauce of tomatoes, garlic, onion, or leeks sau-
téed in olive oil. If the condition was not met, 0 points
were recorded for the category. The final score ranged
from 0 to 14 points. The greater the score obtained from
the questionnaire, the greater the adherence to the Med-
Diet. A dichotomous variable of adherence to the MedDiet
was created using as cut-off points the sample mean. In a
recent work [48] we have demonstrated the important as-
sociation of the scores obtained in this questionnaire with
obesity phenotypes reinforcing the observation that it is a
valid tool that may have a great impact on the genotype-
phenotype relationship.
In addition, a 137-item validated food frequency ques-

tionnaire [49] was administered to all participants. Ener-
gy and nutrient intake were calculated from Spanish
food composition tables [50]. Dichotomous variables for
nutrient intake were also created using as cut-off points
the sample means. Physical activity was estimated by the
Minnesota Leisure Time Physical Activity Questionnaire
validated in Spain [51].

Biochemical analysis, DNA extraction and genotyping
Blood samples were obtained after an overnight fast.
Fasting glucose was measured using standard enzymatic
automated methods as previously described [44].
Genomic DNA was extracted from buffy-coat with the

MagNaPure LC DNA Isolation Kit (Roche Diagnostics,
Mannheim, Germany). The MC4R rs17782313 and FTO
rs9939609 polymorphisms were genotyped on a 7900HT
Sequence Detection System (Applied Biosystems, Foste-
rCity, CA, USA) using fluorescent allelic discrimination
TaqManTM assays. The calling rate for both polymor-
phisms was >95%. For quality control purposes, 5% of
samples were randomly selected and genotyped a second
time. There were no discrepancies between the two
results. Genotype frequencies did not deviate from
Hardy-Weinberg equilibrium expectations for either
polymorphism (P=0.709 for the FTO rs9939609 and
P= 0.637 for the MC4R rs17782313).

Statistical analysis
Genetic variables were tested using dominant models
of the FTO rs9939609 and the MC4R rs17782313 poly-
morphisms individually. Also, an additive genetic score
was created from the two polymorphisms in which the
presence of each of the variant alleles for each poly-
morphism was scored as one point. The range of
values of this aggregate score variable varied from 0 to
4 points. As the number of subjects with a score of 4
points was very low, a new score variable (score-
grouped) was created grouping the categories of 3 and
4 points. Chi-square tests were used to analyze differ-
ences between observed and expected genotype fre-
quencies, assuming Hardy–Weinberg equilibrium, and
to test differences in percentages. We used t-test and
ANOVA to compare crude means of continuous varia-
bles. Multivariate adjustments for comparisons of con-
tinuous variables were carried out by generalized linear
models. Multivariable logistic regression methods were
used to estimate the odds ratios (OR) of the MC4R or
FTO polymorphisms and type 2 diabetes and to adjust
for confounders. Models were first adjusted for age,
sex and center. Additional adjustments for BMI, total
energy intake, physical activity, adherence to the Med-
Diet, tobacco smoking, alcohol consumption or educa-
tion were also carried out as indicated. Dichotomous
variables for dietary intake and physical activity were
created using as cut-off the sample means. The homo-
geneity of the effects by sex was also statistically tested
using the likelihood ratio test. To examine the inter-
action between the MC4R rs17782313, the FTO

http://www.controlled-ttrials.com/ISRCTN
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rs9939609 polymorphisms or their score and adherence
to the MedDiet, or the other dietary variables, we fit-
ted separate multivariate regression models including
the corresponding main effects and interaction terms
in addition to the potential confounders. The likeli-
hood ratio test was used to obtain the P values for
interactions. Stratified analyses were also carried out.
Statistical analyses were performed with the SPSS
package, version 15.0 (SPSS, Chicago, IL). All tests
were two-tailed and P values <0.05 were considered
statistically significant.

Results
We studied 3,430 subjects with type 2 diabetes and
3,622 non-diabetic subjects (57% women, mean age 70
Table 1 Demographic, clinical, lifestyle and genetic character

Total No

(n=7,052) (n

Mean (SD) M

Men/women, n 3008/4044 13

Age (years) 66.9 (6.2) 66

Weight (kg) 76.8 (11.9) 76

BMI (kg/m2) 29.9 (3.8) 30

Waist circumference (cm) 100.4 (10.6) 99

Adherence to the Mediterranean diet 8.7 (1.9) 8.7

Energy intake (kcal/d) 2276 (607) 23

Total fat (g/d) 98.7 (30.4) 99

Saturated fat (g/d) 25.4 (9.2) 25

MUFA (g/d) 48.8 (16.1) 49

PUFA (g/d) 15.9 (7.0) 15

Carbohydrates (g/d) 239 (81) 25

Fiber (g/d) 25.7 (9.2) 25

Alcohol consumption (g/d) 8.4 (14.1) 9.1

Folic acid (microg/d) 406 (127) 40

Physical activity* (kcal/d) 230 (239) 22

Fasting glucose (mg/dL)** 122.2 (41.0) 98

Current smokers (%) 14.1 16

Obesity (%) 46.7 47

Genotypes (%)

FTO rs9939609

TT 33.0 33

TA 48.7 48

AA 18.3 17

MC4R rs17782313***

TT 61.8 61

TC 33.5 33

CC 4.7 4.7

P: P-value for the comparison between subjects with type 2 diabetes and non-diab
*Leisure time physical activity; **: Fasting glucose data were available for 6232 part
***Genotype data for the MC4R were obtained for 7019 subjects.
BMI: Body mass index; MUFA: Monounsaturated fatty acids; PUFA: polyunsaturated
+/-7 years). Because of the selection criteria, type 2 dia-
betes cases did not have higher BMI than non-diabetic
subjects. Table 1 shows the demographic, biochemical,
clinical, lifestyle and genetic characteristics of these par-
ticipants depending on diabetes status. For the whole
sample, mean (±SD) adherence to the MedDiet was 9±2
points on the scale of 0 to 14. We found a small but
statistically significant difference (P=0.003) in the mean
adherence to the MedDiet depending on the type 2
diabetes status. Duration of type 2 diabetes was as
follows: <1 year post-diagnosis (10% of diabetic subjects),
1-5 years (40%) and more than 5 years post-diagnosis
(50%). We did not observe significant differences in the
mean of adherence to the MedDiet depending on the
duration of diabetes (P=0.227), indicating that the
istics of the study participants at baseline

type 2 diabetes Type 2 diabetes

=3,622) (n=3,430)

ean (SD) Mean (SD) P

82/2240 1626/1804 <0.001

.6 (6.1) 67.3 (6.2) <0.001

.6 (11.7) 76.9 (12.2) 0.378

.0 (3.7) 29.9 (4.0) 0.066

.7 (10.6) 101.2 (10.5) <0.001

(2.1) 8.5 (1.9) 0.003

22 (604) 2228 (607) <0.001

.1 (29.6) 98.6 (31.3) 0.534

.2 (9.0) 25.5 (9.4) 0.155

.2 (15.5) 48.6 (16.6) 0.680

.8 (7.2) 15.9 (7.2) 0.816

0 (82) 229 (78) <0.001

.9 (9.3) 25.4 (9.1) 0.063

(14.7) 7.6 (13.4) <0.001

7 (125) 406 (129) 0.777

5 (226) 237 (253) 0.028

.2 (16.4) 147.3 (45.0) <0.001

.0 12.1 0.001

.0 46.4 0.595

.9 32.1 0.227

.3 49.1

.8 18.8

.9 61.9 0.965

.4 33.4

4.7

etes.
icipants.

fatty acids.
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pattern of adherence to the MedDiet remains stable re-
gardless of the diabetes diagnostic.
We did not observe statistically significant differences

in genotype frequencies of the FTO rs9939609 or the
MC4R rs17782313 polymorphisms between subjects with
type 2 diabetes and non-diabetic subjects. The aggregate
score of these two polymorphisms had a prevalence of
20.6% for zero points (homozygous subjects for non-
variant alleles); 40.9% for 1 point (subjects with one
variant allele either at FTO or MC4R; 29.2% for 2
points (subjects with two variant alleles), 8.5% for 3
points (subjects with 3 variant alleles) and 0.8% for 4
points (homozygous subjects for the variant alleles
both at the FTO and MC4R genes) in the whole sam-
ple. We did not detect significant differences for the
aggregate score by diabetes status (P=0.640). The FTO
polymorphism was significantly associated with higher
Table 2 Association between the FTO, the MC4R polymorphis
diabetes

Model 1

Genetic variants OR 95% CI

FTO rs9939609 (n=7,052)

Genotypes

TT 1.00 (reference)

TA+AA 1.08 (0.97-1.19)

P=0.147

Variant allele effects**

(Per A allele) 1.06 (0.99-1.14)

P=0.079

MC4R rs17782313 (n=7,019)

TT 1.00 (reference)

TC+CC 1.01 (0.92-1.12)

P=0.832

Variant allele effects**

(Per C allele) 1.01 (0.93-1.10)

P=0.808

Aggregate score (FTO/ MC4R)

TT and TT (0) 1.00 (reference)

TA or TC (1) 1.06 (0.93-1.21)

TA and TC or AA or CC (2) 1.10 (0.96-1.27)

Otherwise (3 or 4 variants) 1.11 (0.92-1.34)

P=0.553

Variant allele effects, score***

(Per variant allele: 1,2,3,or 4) 1.04 (0.99-1.10)

P=0.137

Multivariate logistic Regression analysis.
Model 1: Adjusted for sex, age and center.
Model 2: Adjusted for sex, age, center, total energy intake and physical activity.
Model 3: Adjusted for sex, age, center, total energy intake, physical activity and BM
**: A variable indicating the number of variant alleles (0, 1 or 2) was created for bot
***: For the estimation as a score, a variable indicating the number of combined va
P: P value obtained for the global effect of the polymorphism in the multivariate lo
BMI in carriers of the variant allele (30.1± 3.9 in TA
+AA subjects vs 29.8±3.8 kg/m2 in TT; P=0.043),
whereas the effect of the MC4R polymorphism did not
reach the statistical significance (30.1± 3.9 in TC+CC
subjects vs 29.9±3.8 kg/m2 in TT; P=0.187). Likewise,
the FTO polymorphism was significantly associated
with waist circumference (100.7± 10.4 in TA+AA subjects
vs 99.9±10.8 cm in TT; P=0.008) and non-significant
differences were observed for the MC4R, although a
similar trend was found 100.7± 11.0 in TC+CC subjects
vs 100.3±10.4 cm in TT); P=0.137.

Association between the FTO rs9939609 and MC4R
rs17782313 polymorphisms and type 2 diabetes
We did not find (Table 2) any statistically significant
association between the FTO rs9939609 polymorphism
and type 2 diabetes when analyzing the population as
ms and the combined score (FTO and MC4R) and type 2

Model 2 Model 3

OR 95% CI OR 95% CI

1.00 (reference) 1.00 (reference)

1.07 (0.97-1.18) 1.07 (0.97-1.19)

P=0.191 P=0.181

1.06 (0.98-1.13) 1.06 (0.98-1.13)

P=0.118 P=0.111

1.00 (reference) 1.00 (reference)

1.01 (0.92-1.12) 1.01 (0.91-1.12)

P=0.837 P=0.845

1.01 (0.93-1.09) 1.01 (0.93-1.09)

P=0.817 P=0.800

1.00 (reference) 1.00 (reference)

1.06 (0.93-1.20) 1.06 (0.93-1.20)

1.10 (0.96-1.27) 1.10 (0.96-1.27)

1.10 (0.90-1.32) 1.10 (0.91-1.33)

P=0.572 P=0.553

1.04 (0.98-1.10) 1.04 (0.98-1.09)

P=0.183 P=0.169

I.
h the FTO and the MC4R.
riant alleles was created (0, 1, 2, 3 or 4).
gistic regression models.
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a whole (OR:1.07, 95%CI: 0.97-1.18; P=0.191 for carriers
of the FTO obesity risk allele in comparisons with TT
homozygotes in model 2). Additional adjustment for
BMI did not change the results (model 3). Likewise, there
was no association between the MC4R rs17782313 poly-
morphism and type 2 diabetes in the whole sample
(OR:1.01, 95%CI: 0.92-1.12; P=0.837 for carriers of the
MC4R risk allele in comparison with TT homozygotes.
Neither was the aggregate score associated with type 2
diabetes (P=0.572). Additional adjustment for BMI did
not change the associations. We observed no heteroge-
neity by gender (P for interactions >0.05).

Gene-diet interaction between the FTO rs9939609 and
MC4R rs17782313 polymorphisms and adherence to the
MedDiet in determining type 2 diabetes
We found a relevant interaction between adherence to
the MedDiet and these polymorphisms in determining
type 2 diabetes (Table 3), which was significant both
for the FTO (P-interaction=0.039) and for the MC4R
(P-interaction=0.009) as well as for their aggregate
score (P-interaction=0.006) (Model 1). According to
these interactions, the association or not of these
Table 3 Association between the FTO, the MC4R and the com
diabetes

Model 1

Adherence to the Mediterranean diet

Low (<9 points) High (>=9 points) P

OR 95% CI OR 95% CI G

FTO rs9939609 (n=7,052) 0

TT 1.00 (reference) 1.00 (reference)

TA + AA 1.21 (1.03-1.40) 0.97 (0.85-1.13)

P1=0.019 P1=0.673

MC4R rs17782313 (n=7,019) 0

TT 1.00 (reference) 1.00 (reference)

TC + CC 1.17 (1.01-1.36) 0.89 (0.78-1.02)

P1=0.035 P1=0.097

Aggregate score (FTO/MC4R) 0

TT and TT (0) 1.00 (reference) 1.00 (reference)

TA or TC (1) 1.26 (1.05-1.56) 0.89 (0.75-1.07)

TA and TC or AA or CC (2) 1.29 (1.05-1.59) 0.96 (0.79-1.16)

Otherwise (3 or 4 variants) 1.45 (1.10-1.93) 0.86 (0.66-1.12)

P1=0.024 P1=0.532

Variant allele effects** 0

(Per variant allele: 1,2,3,or 4) 1.12 (1.03-1.21) 0.97 (0.91-1.05)

P1=0.005 P1=0.475

Stratified multivariate* logistic regression analysis depending on the adherence to t
*: Models adjusted for sex, age, center, total energy intake and physical activity (Mo
**: For the estimation of the variant allele effect, the score variable indicating the n
continuous.
P1: P value obtained for the global effect of the polymorphism in the multivariate
P2: P value for the interaction term between adherence to the Mediterranean diet a
polymorphisms with type 2 diabetes depended on the de-
gree of adherence to the MedDiet. When adherence to
the MedDiet was low (=<9 points), carriers of the variant
allele (obesity-risk allele) had a higher risk of prevalent
type 2 diabetes (OR=1.21, 95%CI: 1.03-1.40; P=0.019 for
FTO and OR=1.17, 95%CI:1.01-1-36; P=0.035 for MC4R)
than homozygous subjects for the major allele. However,
when adherence to the MedDiet was high (>=9 points),
there was no association of these polymorphisms with
type 2 diabetes (OR=0.97, 95%CI: 0.85-1.16; P=0.673 for
the FTO and OR=0.89, 95%:0.78-1-02; P=0.097 for the
MC4R). These interactions remained statistically signifi-
cant even after adjustment for BMI (P-interaction= 0.039
for FTO, P-int=0.009 for MC4R and P=0.006 for the
aggregate score) (Model 2). Further adjustments for al-
cohol, tobacco smoking or education did not change
the statistical significance of the results (not shown).
These polymorphisms had an additive effect in the
interaction with MedDiet on type 2 diabetes. So, when
the aggregate score was considered as a continuous
variable, we also obtained a statistically significant
interaction effect (P-interaction=0.024 after adjustment
for BMI). When we considered the aggregate genetic
bined score (FTO and MC4R polymorphisms) and type 2

Model 2

Adherence to the Mediterranean diet
2 interaction Low (<9 points) High (>=9 points) P2 interaction

ene x AMD OR 95% CI OR 95% CI Gene x AMD

.039 0.039

1.00 (reference) 1.00 (reference)

1.20 (1.03-1.40) 0.97 (0.85-1.12)

P1=0.020 P1=0.743

.009 0.009

1.00 (reference) 1.00 (reference)

1.17 (1.01-1.36) 0.89 (0.78-1.02)

P1=0.036 P1=0.102

.006 0.006

1.00 (reference) 1.00 (reference)

1.27 (1.06-1.56) 0.89 (0.75-1.07)

1.29 (1.05-1.59) 0.96 (0.79-1.17)

1.45 (1.09-1.92) 0.87 (0.69-1.13)

P1=0.024 P1=0.513

.012 0.012

1.12 (1.03-1.21) 0.97 (0.91-1.05)

P1=0.006 P1=0.532

he Mediterranean diet (AMD).
del 1). Model 2 was additionally adjusted for BMI.
umber of combined variant alleles (0, 1, 2 , 3 and 4) was considered as

logistic regression models.
nd the corresponding polymorphism in the logistic regression model.



Ortega-Azorín et al. Cardiovascular Diabetology 2012, 11:137 Page 7 of 12
http://www.cardiab.com/content/11/1/137
score (score-grouped) as a categorical variable, indivi-
duals carrying 3 or 4 variant alleles for the FTO
rs9939609 and the MC4R rs17782313 polymorphisms
had 45% higher odds (P=0.009) of prevalent type 2
diabetes (OR: 1.45; 95%CI:1.09-1.92) than subjects with
no risk alleles if their adherence to the MedDiet was
low. However, when adherence to the MedDiet was
high, the higher risk of type 2 diabetes in subjects car-
rying variant alleles at both the FTO and the MC4R
loci, were completely blunted (OR: 0.86; P=0.266).
Furthermore, we adjusted the interaction models for

waist circumference instead of BMI. This adjustment in
the multivariate model (Model 2) did no change the
level of significance of the interactions terms between
the polymorphisms and adherence to the Mediterranean
diet in determining type 2 diabetes (P-int: 0.034 for FTO,
P-int: 0.010 for MC4R and P-int: 0.015 for the aggregate
score). Thus, this gene-diet interaction remained statisti-
cally significant even adjustment for waist circumference.

Gene-diet interactions between the FTO rs9939609 and
MC4R rs17782313 polymorphisms and folate intake on
type 2 diabetes and fasting glucose concentrations
We analyzed the interaction between folate intake
(as dichotomous based on the population mean of
406 μg/d) and the polymorphisms on type 2 diabetes,
but we did not obtain any statistically signifi
cant interaction term (P-interaction=0.203 for the
FTO rs9939609, P-interaction=0.745 for the MC4R
rs17782313 and P-interaction=0.667). As changes in
methylation are very dynamic, we hypothesized a more
direct effect of folate intake on fasting glucose concen-
trations in non-diabetic subjects, as diabetic subjects
were taking medication and this could alter the results.
We found (Figure 1) a statistically significant in
teraction (P=0.023) between the FTO rs9939609 poly-
morphism and folate intake on fasting glucose concentra-
tions in non-diabetic subjects (Figure 1A). Thus, when
folate intake was low, carriers of the variant allele had
higher fasting plasma glucose concentrations than wild-
type subjects. However, this was not observed when folate
intake was high. Although, for the MC4R rs17782313, we
found no significant interaction (Figure 1B), on analyzing
the joint variable of both polymorphisms, the interaction
term reached statistical significance (P=0.026) (Figure 1C).
After adjustment of the multivariate interaction models
for waist circumference instead of BMI, we did not ob-
serve differences in the level of significance of the
previously obtained results (P-int: 0.018 for FTO: P-int:
0.627 for MC4R and P-int: 0.021 for the aggregate score.)
Finally, taking into account that there is evidence to

suggest [52] that dietary fiber could modify the associa-
tion between the FTO rs9939609 and obesity risk and
considering that folate intake is strongly correlated with
fiber intake (rho=0.801; P<0.001 in this population), we
have adjusted the effects of folate for total fiber intake
(as continuous in g/d). After this additional adjustment
in the multivariate model, the statistical interaction of
the interaction term between folate intake and the FTO
polymorphism or between folate and the aggregate score
in determining fasting glucose concentrations in non-
diabetic subjects did not change in significance level
(P-int: 0.028 and P-int: 0.047, respectively).

Discussion
In this study, in which type 2 diabetes cases and non-
diabetic subjects did not differ in BMI, we found no sta-
tistically significant association between the FTO
rs9939609 polymorphism and type 2 diabetes when ana-
lyzing the population as a whole. This result agrees with
some previous studies in which no association with type
2 diabetes was reported [6,28-30]. However, in other
investigations higher type 2 diabetes risk in carriers of
the minor allele (obesity-risk allele) has been reported
[13-17,20,21,23-29]. Among them there were many stud-
ies [1,23,27-29], including the first GWAs that detected
the association between the FTO rs9939609 polymor-
phism and obesity risk [1], in which such association with
type 2 diabetes disappears after adjusting for BMI, lead-
ing the authors to conclude that as the association be-
tween the FTO polymorphism and type 2 diabetes was
mediated by BMI, the FTO is a susceptibility locus for
obesity, but not for type 2 diabetes. However, in other
reports [13-17,20,21] the association of the FTO minor
allele with type 2 diabetes risk persisted even after adjust-
ment for BMI increasing the evidence that the FTO can
also be considered a diabetes-prone gene. However, some
of these studies have been criticized for analyzing preva-
lent cases of type 2 diabetes and for differences of BMI
between diabetic and non-diabetic subjects [24], recom-
mending future case-control studies paired by BMI in
order to better examine the independent effects. In the
PREDIMED study, we fulfilled this requirement of having
no differences in BMI between groups. This is a strength
of our study and we were able to better analyze the
effects of the FTO on type 2 diabetes more specifically.
Accordingly, the main finding and novelty of our

results is that we have found that the association be-
tween the FTO rs9939609 polymorphism and type 2 dia-
betes depends on the diet consumed. Thus, when the
dietary pattern departed from the traditional MedDiet
(low-adherence to the MedDiet), the FTO rs9939609
was significantly associated with higher type 2 diabetes
risk, while a good adherence to the MedDiet blunted
this association. This gene-diet interaction was robust
regardless of adjustment for BMI. Our results are sup-
ported by studies in mice in which a modulation by diet
on the association of the fto gene with glucose
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intolerance has been reported [32]. As far as we know
this is the first time that a significant interaction be-
tween the FTO rs9939609 and diet in determining type
2 diabetes has been reported in humans. Another study
[53] concomitantly examined the effects of physical
activity and caloric intake on the association between
the FTO rs8050136 and diabetes in U.S. women, but
found no statistically significant interaction. The small
number of type 2 diabetes cases in that study [53] was a
limitation.



Ortega-Azorín et al. Cardiovascular Diabetology 2012, 11:137 Page 9 of 12
http://www.cardiab.com/content/11/1/137
There is increasing evidence that the MedDiet protects
against type 2 diabetes [36,37], so it is not surprising that
high adherence to this dietary pattern cancels the effects
of greater genetic susceptibility to diabetes in FTO risk
allele carriers. Such an interaction with diet might help
explain the discrepancies in the published studies if
those that did not find an association between the FTO
rs9939609 polymorphism and diabetes risk [6,28-30]
were enriched in subjects following a diet similar to high
adherence to the MedDiet pattern, while studies that
detected this association [13-17,21] dealt with popula-
tions with a less healthy dietary pattern, compatible with
low adherence to the MedDiet.
One limitation of our study is that we analyzed preva-

lent cases of type 2 diabetes, as the incidence of diabetes
in our cohort is still being compiled. Nevertheless, the
dietary pattern of our study subjects was quite stable
over time [44,54] and we did not detect differences in
the adherence to the MedDiet depending on the du-
ration of diabetes in this analysis. Similar results of no
differences in diet were found in another study in Spain
[35]. Thus, diabetes diagnosis did not change signifi-
cantly the overall adherence to the MedDiet minimizing
the reverse causation bias. Moreover, we have observed
a similar protective effect of the MedDiet on type 2 dia-
betes risk when analyzing prevalent or incident type 2
diabetes cases in sub-samples of the PREDIMED study
[37,54]. Likewise, in a Scandinavian population [14], the
FTO rs9939609 was associated with both prevalent type
2 diabetes (OR 1.13; P<0.001) and the risk of developing
incident type 2 diabetes (OR 1.16; P<0.001) having com-
parable results. Thus, although it is necessary to investi-
gate the effect of the interaction between the level of
adherence to the MedDiet and the FTO rs9939609 on
incident type 2 diabetes cases in future studies, it is fore-
seeable that the results would be similar.
Just as for the FTO rs9939609, we found no associa-

tions of the MC4R rs17782313 with type 2 diabetes for
the whole cohort despite a recent meta-analysis identi-
fying the MC4R loci as a new loci related to type 2 dia-
betes in European populations [23]. Again, prior results
from genetic association studies regarding this poly-
morphism and type 2 diabetes are discordant and some-
times vary after adjustment for BMI [2,18,19,22,25,26].
Although Qi et al [18] described a higher risk of type 2
diabetes in carriers of the minor allele, supporting pre-
liminary data of Loos et al [2], Thomsen et al [25] in a
large sample of Danish subjects did not find such asso-
ciation. Noticeably, we detected, for the MC4R rs17782313,
a similar interaction with adherence to the MedDiet as for
the FTO rs9939609, and this is also a relevant and novel
finding of the present investigation. Moreover, when we
analyzed the aggregate genetic score of the FTO and
MC4R polymorphisms, we also observed an additive effect
of these polymorphisms on the gene-diet interaction, thus
strengthening our results.
Besides examining the genetic interactions with adhe-

rence to the MedDiet, we analyzed interactions with
various macronutrients and food groups, but found none
(not shown). This strengthens the notion that for dietary
modulation the contribution of one food is not crucial,
but it is rather the overall dietary pattern with various
foods or nutrients synergizing among them that is im-
portant. Considering the significant gene-diet interaction
results that we have obtained for the FTO and MC4R
loci, it would be interesting in future studies to analyze
this interaction for other polymorphisms previously
associated with obesity and/or diabetes [55-58].
Finally regarding our secondary objective aimed on

studying the role of folate intake in this gene-diet inter-
action, given that recent literature is highlighting the im-
portance of epigenetics in insulin resistance and type 2
diabetes [42,59,60], we found interesting preliminary
results that require confirmation in future studies. Al-
though no interaction of folate intake with the genetic
variants on type 2 diabetes was observed, we examined
fasting glucose concentrations as a more dynamic
diabetes-related trait and found a statistically significant
interaction between the FTO rs9939609 polymorphism
and folate intake in non-diabetic subjects. Thus, the
FTO variant allele tended to be associated with higher
fasting glucose concentrations when folate intake was
low, but not when it was high. Currently, the FTO gene
has been outlined as an important gene in which effects
may be mediated through epigenetics [61]. A study
reported that the CpG site in the first intron of the FTO
gene was hypomethylated in type 2 diabetes cases rela-
tive to controls [60]. Folate is required for the synthesis
of S-adenosyl methionine, which serves as a methyl
donor for DNA methylation events; thereby folate avail-
ability may be crucial in the DNA methylation status
[40]. The MedDiet is rich in folate and so one of the
mechanisms underlying its protective effect against type
2 diabetes could be the influence of folate on DNA-
methylation and fasting glucose. Some clinical trials have
shown folic acid supplementation reduces insulin resist-
ance [62]. Although it could be one of the mechanisms
that may contribute to explaining the observed gene-diet
interaction, we believe that it is not the only one and
that more research has to be undertaken on this point.
Although for MC4R we found no significant interaction
with folate, there was a similar trend and, when analy-
zing the aggregate variable of both polymorphisms, the
interaction term reached statistical significance, support-
ing additive effects. In this regard, there is a study in
mice showing that diet might have an effect on the
methylation status of the Mc4r gene [37]. However, our
statistically significant results should be accepted with
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caution as folate intake may simply reflect a healthy diet-
ary pattern and not a causal association with that micro-
nutrient, given that, in our study, we did not carry out a
methylation analysis to test this hypothesis. Moreover,
although we have found a nominally significant inter-
action between the FTO polymorphism and the aggre-
gate score and folate intake in determining fasting
plasma glucose concentrations, we cannot rule out the
possibility that, as this is a secondary hypothesis and we
have not corrected the P-values for multiple compari-
sons, the association obtained represents a false positive
result.

Conclusion
In conclusion, we described for the first time a statisti-
cally significant gene-diet interaction of the FTO
rs9939609 and MC4R rs17782313 with adherence to the
MedDiet on type 2 diabetes. When adherence was low,
the obesity risk alleles were associated with type 2 dia-
betes regardless of BMI, but more studies are needed to
confirm this interaction. Although we have also found a
statistically significant interaction with folate intake on
fasting glucose that may help to explain in part this
interaction, the potential mechanisms behind this inter-
action remain to be investigated in further studies.
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