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Abstract

Objective: The metabolic syndrome (MetS) is a cluster of clinical indices that signals increased risk for
cardiovascular disease and Type 2 diabetes. The diagnosis of MetS is typically based on cut-off points for various
components, e.g. waist circumference and blood pressure. Because current MetS criteria result in racial/ethnic
discrepancies, our goal was to use confirmatory factor analysis to delineate differential contributions to MetS by
sub-group.

Research Design and Methods: Using 1999–2010 data from the National Health and Nutrition Examination Survey
(NHANES), we performed a confirmatory factor analysis of a single MetS factor that allowed differential loadings
across sex and race/ethnicity, resulting in a continuous MetS risk score that is sex and race/ethnicity-specific.

Results: Loadings to the MetS score differed by racial/ethnic and gender subgroup with respect to triglycerides
and HDL-cholesterol. ROC-curve analysis revealed high area-under-the-curve concordance with MetS by traditional
criteria (0.96), and with elevations in MetS-associated risk markers, including high-sensitivity C-reactive protein (0.71),
uric acid (0.75) and fasting insulin (0.82). Using a cut off for this score derived from ROC-curve analysis, the MetS risk
score exhibited increased sensitivity for predicting elevations in ≥2 of these risk markers as compared with
traditional pediatric MetS criteria.

Conclusions: The equations from this sex- and race/ethnicity-specific analysis provide a clinically-accessible and
interpretable continuous measure of MetS that can be used to identify children at higher risk for developing adult
diseases related to MetS, who could then be targeted for intervention. These equations also provide a powerful
new outcome for use in childhood obesity and MetS research.

Keywords: Metabolic syndrome, Factor analysis, Statistical, Insulin resistance, Pediatrics, Adolescents, Epidemiology,
Clinical studies, Obesity, Risk factors
Background
The metabolic syndrome (MetS) is a cluster of inter-
related individual factors that increase risk for future
Type 2 diabetes mellitus (T2DM) and cardiovascular
disease (CVD) [1,2]. These individual components of
MetS include elevations in adiposity, triglycerides,
blood pressure (BP) and fasting glucose, and low
levels of high-density lipoprotein (HDL) particles (a
surrogate for which is HDL cholesterol) [3]. While
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the pathophysiologic processes that drive abnormalities
in these individual components are not fully understood,
these underlying processes appear to be related to sys-
temic insulin resistance [3]. In an attempt to understand
the existence of MetS and the contributions of clinical
measures of its components more fully, numerous
researchers have used factor analysis, a model that
explains the correlation among a set of variables in
terms of a smaller set of unobserved “factors” [4-6]. A
previous review highlighted the motivations and the pit-
falls of the use of various forms of factor analysis for this
purpose [4]. Namely, the majority of studies have been
exploratory, have not fully evaluated the appropriateness
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of a linear factor model in exploring MetS, and have not
taken great care in the factor analysis itself, for example
including in the model(s) highly correlated variables
such as systolic blood pressure (SBP) and diastolic blood
pressure simultaneously.
For most sets of MetS criteria—including the Adult

Treatment Panel III (ATP-III)—MetS is classified based
on cut-off values for each of the individual components
[3,7-9]. A given person is classified as having MetS in
the presence of three or more abnormalities in these
components. When applied to populations, the ATP-III
MetS criteria for adults [3]—or an adolescent adaptation
of these criteria [7]—predict elevations in measures of
obesity-related inflammation (such as serum levels of
high-sensitivity C-reactive protein, hsCRP[10]), oxidative
stress (such as uric acid [11,12]) and insulin resistance
(often assessed in epidemiological studies as fasting insu-
lin [13-15]). In a prospective manner, a classification of
MetS can be tracked over time [16] and predicts future
T2DM in adolescents [8] and future CVD [2,17] and
T2DM [18] in adults. As such, the presence of MetS in
this era of pediatric obesity [19] has been proposed as a
trigger for increased intervention [9,20].
Nevertheless, controversy exists over which of a vari-

ety of sets of MetS criteria to use among adolescents
(Additional file 1: Table S1) [7,9,21-24], and evidence
suggests that current criteria exhibit racial/ethnic and
gender differences in the ability of MetS criteria to iden-
tify increased risk [25]. Non-Hispanic-black individuals
have lower rates of MetS [26,27] despite having higher
rates T2DM and death from CVD [28]. Currently-used
criteria for MetS exhibit a lower sensitivity to detect
insulin resistance [14], underlying inflammation [29] and
oxidative stress (as assessed by levels of uric acid) [30]
among non-Hispanic-black adolescents compared to
non-Hispanic whites or Hispanics. A major reason for
this is that in non-Hispanic-black adolescents triglycer-
ide levels are lower and HDL levels are higher (i.e., more
favorable) at baseline, and although these levels continue
to worsen with progressive insulin resistance, they are
overall less likely to exceed population cut-offs required
for MetS diagnosis [27,31,32].
Because of these drawbacks of current MetS criteria,

many have advocated for using a continuous scale for
MetS diagnosis [33,34] or for criteria that are race/ethni-
city-specific [27,31,32] Eisenmann provides an overview
of multiple proposed continuous pediatric MetS scores,
the majority of which use a sum of z-scores of individual
MetS components [33]. While these z-scores can be cal-
culated to account for age, sex and race/ethnicity, the
method of standardizing components (e.g., waist circum-
ference (WC), blood pressure) and summing the result-
ing z-scores to formulate a MetS score does not account
for the strong correlations that occur across the
components themselves and does not account for possi-
ble differential influences of individual components on
the overall score [33]. To better account for these draw-
backs, Li and Ford performed a confirmatory factor ana-
lysis on adolescents to assess the validity of one factor in
explaining the covariance across the traditional MetS
components; however, they did not detect hypothesized
differences by sex and race/ethnicity, potentially due to
being inadequately powered [5]. Others have performed
such an analysis in ethnically homogeneous populations
[6,35].
Our study had two primary goals. Our first goal was to

perform a multi-group confirmatory factor analysis that
assumed a one-factor model of the traditional MetS
components while allowing for differences across sex
and race/ethnicity [5]. Thus, we are testing our hypoth-
esis that the factor structure is the same across all sex
and race/ethnicity groups, but that the manner in which
these MetS components correlate with this factor differs
across the groups in a meaningful way. Second, if we
found differences in these correlations utilizing this one-
factor model, we would utilize the factor score from this
model among adolescents as a continuous MetS “risk
score” that was sex- and race/ethnicity specific. The abil-
ity of this risk score to detect elevations in surrogate fac-
tors related to processes underlying MetS, including
hsCRP, uric acid and fasting insulin, could then be
assessed on a race/ethnicity-specific basis. The data for
this study were from the past twelve complete years
released from NHANES (1999–2010), and thus would
provide substantially more power than prior attempts to
detect sex and racial/ethnic differences if they exist and
would provide a subsequent reliable set of equations
from which to base a continuous score. Our hypothesis
was that such a race/ethnicity and sex-specific score, if
determined necessary by the confirmatory factor analy-
sis, would perform better than traditional MetS criteria
at predicting surrogate factors related to MetS.

Methods and procedures
Data were obtained from NHANES (1999–2010), a com-
plex, multistage probability sample of the US population
[7]. These annual cross-sectional surveys are conducted
by the National Center for Health Statistics (NCHS) of
the Centers for Disease Control (CDC), with randomly-
selected subjects undergoing anthropometric and blood
pressure measurements, answering questionnaires and
undergoing phlebotomy. The NCHS ethics review board
reviewed and approved the survey and participants gave
informed consent prior to participation. Body mass
index (BMI), SBP, and laboratory measures of triglycer-
ides, HDL-C, and fasting glucose were obtained using
standardized protocols and calibrated equipment [7]. For
SBP, the mean of up to four readings taken on each
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individual was used. All blood samples used for analyses
were obtained following a fast ≥8 hours prior to the
blood draw.
Data from non-Hispanic-white, non-Hispanic-black, or

Hispanic (Mexican-American/other Hispanic) adoles-
cents 12–19 years old were analyzed. Children <12 years
old were excluded since fasting values for triglycerides
and glucose were only obtained in participants ≥12 years
old. Subjects were excluded if they had known diabetes
or unknown diabetes (fasting plasma glucose >125 mg/
dL), as each of these limit insulin release [36]. Pregnant
women were also excluded, as well as individuals taking
antihyperlipidemic or anti-diabetic medications as these
are all likely to alter lipid and insulin levels.
We combined all data sets from the 6 two-year cycles

(1999–2010) for statistical analyses to increase our total
sample size. Prevalence rates of MetS were calculated by
sex and race/ethnicity, according to Ford’s pediatric
adaptation of the ATP III adult criteria [7], and mean
levels (95% CI’s) of the MetS components of interest
(BMI z-score, SBP, HDL, triglycerides, and glucose) as
well as the surrogate outcomes (hsCRP, uric acid, fasting
insulin) were calculated by sex and race/ethnicity.
A series of confirmatory factor analyses (CFA) were

then performed on the five identified MetS compo-
nents: BMI z-score, SBP, HDL, triglycerides, and glu-
cose. Numerous definitions of MetS have been
proposed with various components that comprise it
[3,7-9,21-24,37-39]. We selected these five components
exclusively because of their inclusion in the most pro-
minently used MetS criteria (Additional file 1: Table S1)
and due to their clinical accessibility. We chose to use
BMI-z-score instead of WC because BMI-z-scores can
be standardized by age and sex using established CDC
programs [40]. Unfortunately, while cut-off values exist
to identify elevations in WC by age in adolescents [7,9],
there is a lack of precise percentiles to permit such
standardization of WC values in adolescents. In addi-
tion, WC as a clinical measure is prone to substantial
measurement error [41] and is not consistently used in
clinical care, while BMI z-scores are readily available
and are the predominant tool recommended for adipos-
ity assessment in clinical practice [42]. With such a fac-
tor analysis, both SBP and DBP should not be included
together [4], and we chose SBP given it is more strongly
associated with insulin resistance [5] and other out-
comes [43]. Triglycerides were log-transformed, and all
variables were standardized (mean=0, SD=1) over the
entire sample. The inverse of HDL was used when stan-
dardizing, so a higher factor loading score would be
similar in interpretation to the other measures in the
model. The variables were not standardized within
groups to allow for potential overall higher standardized
scores within sex- and race/ethnic-specific groups. A
one-factor model formed the basis of all of the CFA’s
performed; measurement errors between the five com-
ponents were assumed not to be correlated. The factor
loadings were of interest, indicating the magnitude of
association between each component and the underly-
ing “MetS” factor. Factor loadings >0.3 were considered
clinically meaningful. Using PROC CALIS in SAS, the
parameters of the CFA’s were estimated via maximum
likelihood. Two multi-group one-factor CFA’s were fit:

1) Model 1: constrained the factor loadings to be equal
across the six combinations of sex and race/ethnicity;

2) Model 2: allowed the factor loadings to vary across
the six groups.

Chi-square tests of the equality of the factor loadings
across the six groups in Model 2 were performed. The
two models were compared using various fit statistics,
both overall and by group. Chi-square and Akaike’s
Information Criteria (AIC) were used for model compar-
isons; smaller chi-square and AIC values indicated a bet-
ter fit. A chi-square difference test was calculated; a
significant difference between two nested models implies
that the model with more paths explains the data better
[44]. Other goodness of fit indices included the Root
Mean Square Error of Approximation (RMSEA; >0.06
poor fit), the Standardized Root Mean Square Residual
(SRMR; >0.08 poor fit), the Goodness of Fit Index (GFI;
<0.90 poor fit), and the Bentler-Bonett Normed Fit Index
(NFI; <0.90 poor fit) [45].
The standardized factor coefficients from the better-

fitting model were used to calculate the MetS factor
score on each individual. This score can be interpreted
as a Z-score (mean 0, SD=1), with higher scores repre-
senting an increased risk of MetS. Receiver operating
characteristic (ROC) analysis was used to assess the abil-
ity of this new score to discriminate against the tradi-
tional MetS criteria [7] as well as elevated levels of the
three identified CVD/T2DM surrogates. Specifically, we
were interested in the ability to predict elevated fasting
insulin (>16 IU/mL, the 95th percentile among normal-
weight adolescents [14]), elevated hsCRP (>4.5 mg/L
[29]), and elevated uric acid (approximately the 95th

percentile among lean individuals: 7.0 mg/dL for males,
5.5 mg/dL for females [30]). In this analysis, individuals
with CRP >10.0 mg/L were excluded. In addition, the
ability to predict 1 and ≥2 elevations amongst these sur-
rogates was of interest, as this indicates the more at-risk
adolescents. Overall predictive performance was mea-
sured by the area under the curve (AUC) of the ROC
curve, with 0.5 and 1.0 indicating no and perfect predic-
tive ability, respectively. We considered AUC values
>0.70 to be reasonably accurate and AUC >0.90 to be
very accurate. Sensitivities and specificities to predict ≥2
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elevations among the three surrogates were compared
between the traditional MetS classification and a defini-
tion of MetS using a cutoff identified by the ROC analy-
sis; these statistics were done on a sex and race/
ethnicity-specific basis.
Statistical significance was defined as a p-value<0.05.

Statistical analysis was performed using SAS (version
9.3, Cary, NC). Descriptive statistics as well as sensitivity
estimates used SAS survey procedures (SURVEY-
MEANS, SURVEYFREQ), which accounts for the survey
design when estimating standard errors to obtain
population-based estimates. The CFA itself did not
account for the survey design due to the inability of
standard software to perform multigroup CFA’s within
subpopulations while accounting for the survey design.

Results
Of the 4,413 participants eligible per the criteria
described above, 239 (5.4%) were missing at least one of
the MetS components and were not included in the ana-
lysis. The sample of participants thus consisted of 4,174
male and female non-Hispanic blacks, non-Hispanic
whites, and Hispanics age 12–19 years old with complete
data for MetS components (Table 1). The overall preva-
lence of MetS in these adolescents was 8.1% according
to Ford’s pediatric adaptation of the ATP-III criteria [7].
Among US adolescent males and females, the prevalence
Table 1 NHANES 1999–2010 Characteristics: Children 12–19 Y
Components (n = 4,174)

n % with Mets
(95% CI)*

BMI
Z-score

HDL Tr

Overall 4,174 8.1 0.6 51.4

(6.8, 9.4) (0.5, 0.6) (50.8, 51.9)

By Gender and Race/Ethnicity

Males

Non-Hispanic White 645 11.4 0.5 48.0

(8.5, 14.3) (0.4, 0.6) (47.0, 49.0)

Hispanic 866 12.9 0.7 49.1

(9.5, 16.3) (0.6, 0.8) (48.0, 50.2)

Non-Hispanic Black 697 4.9 0.6 54.9

(3.0, 6.7) (0.5, 0.7) (53.5, 56.2)

Females

Non-Hispanic White 566 5.0 0.5 53.3

(3.3, 6.7) (0.4, 0.6) (52.2, 54.4)

Hispanic 831 8.2 0.7 52.2

(5.5, 10.9) (0.6, 0.8) (51.2, 53.2) (

Non-Hispanic Black 569 3.5 0.9 56.4

(1.8, 5.3) (0.8, 1.0) (55.0, 57.9)

* Pediatric Adaptation of ATP III of Metabolic Syndrome (Ford 2007).
of ATP-III-based MetS was considerably lower among
non-Hispanic-blacks. Males were generally more likely
to have MetS across racial/ethnic group.
Comparison of overall chi-square test values between the

two CFA models indicate that Model 2 provides the signifi-
cantly better fit relative to the other two (Δχ2 (50)=253.28,
p<0.001); this is confirmed when comparing the Akaike’s
Information Criteria (AIC) between the two overall
models. The other fit statistics, presented in Table 2,
indicate that while a one-factor model of the traditional
MetS components is not necessarily an excellent fit,
allowing the loadings to vary by sex and race/ethnicity
in such a one-factor representation of MetS (Model 2)
provided a better fit. When examining MetS on a sex
and racial/ethnic specific basis via Model 2; a one-factor
model of MetS using traditional measures fit all groups
well, except for non-Hispanic-white females. Tests of
the equality of the loadings across groups in Model 2
were significant for HDL, SBP and triglycerides (Table 2).
Examination of the loadings in Model 2 indicate that
overall glucose is not correlated with a single MetS fac-
tor for any subgroup (all loadings <0.30); we chose to
keep it in the model given its prominence in established
MetS criteria. SBP is more correlated with a single
MetS factor for non-Hispanic-white males; HDL is less
correlated with a single MetS factor for non-Hispanic-
white females. Triglycerides are less correlated for females
ears Old with Data on all Metabolic Syndrome

Mean (95% Confidence Interval)

iglycerides SBP Glucose CRP Insulin Uric Acid

88.2 109.5 93.0 1.6 11.3 5.2

(85.6, 90.8) (108.9, 110.1) (92.6, 93.4) (1.4, 1.7) (10.9, 11.7) (5.1, 5.2)

94.4 112.1 94.9 1.2 10.3 5.8

(89.8, 98.9) (111.1, 113.0) (94.3, 95.5) (1.0, 1.4) (9.6, 11.1) (5.8, 5.9)

92.6 111.4 96.0 1.9 12.9 5.6

(88.0, 97.2) (110.1, 112.7) (95.2, 96.7) (1.4, 2.3) (11.8, 14.1) (5.5, 5.8)

68.9 114.6 92.8 1.4 11.1 5.3

(65.9, 72.0) (113.7, 115.5) (92.1, 93.4) (1.1, 1.8) (10.0, 12.2) (5.2, 5.4)

89.1 106.1 91.4 1.7 10.5 4.7

(84.2, 94.0) (105.1, 107.1) (90.6, 92.1) (1.3, 2.2) (9.7, 11.3) (4.6, 4.7)

93.9 106.0 91.9 2.1 13.7 4.4

84.4, 103.5) (105.2, 106.8) (91.1, 92.7) (1.7, 2.4) (12.6, 14.7) (4.3, 4.5)

64.9 109.1 89.4 1.9 14.0 4.3

(61.9, 67.9) (107.9, 110.2) (88.6, 90.2) (1.6, 2.3) (13.1, 14.9) (4.2, 4.4)



Table 2 Confirmatory Factor Analysis Results*

Model 1 Model 2

Males Females Males Females

Model Fit Indices Overall NHW NHB Hisp NHW NHB Hisp Overall NHW NHB Hisp NHW NHB Hisp

Chi-square (df) 492.88 (80) 239.60 (30)

Akaike’s Information Criteria (AIC) 512.9 359.60

Root Mean Square Error of
Approximation (RMSEA)

0.086 0.100

Standardized Root Mean
Square Residual (SRMR)

0.105 0.115 0.083 0.091 0.120 0.130 0.094 0.049 0.055 0.045 0.038 0.059 0.051 0.046

Goodness of Fit Index (GFI) 0.955 0.942 0.962 0.966 0.950 0.940 0.960 0.977 0.966 0.980 0.986 0.972 0.976 0.979

Bentler-Bonett Normed
Fit Index (NFI)

0.757 0.745 0.780 0.847 0.524 0.614 0.800 0.882 0.863 0.890 0.945 0.741 0.841 0.887

Factor Loadings p-value**

BMI z-score 0.60 0.279 0.63 0.55 0.66 0.60 0.68 0.56

SBP 0.34 0.019 0.50 0.33 0.30 0.37 0.31 0.29

HDL 0.57 0.004 0.51 0.66 0.61 0.38 0.55 0.55

Triglycerides 0.52 < 0.001 0.62 0.50 0.67 0.26 0.33 0.55

Glucose 0.21 0.250 0.23 0.27 0.22 0.11 0.18 0.20

* Model 1: Single factor, loadings constrained to be equal across all six sex-race/ethnicity groups.
Model 2: Single factor, loadings allowed to vary across all six groups.
** Chi-square test (5 df) p-value comparing factor loadings across the six groups.
NHW = Non-Hispanic White; NHB = Non-Hispanic Black; Hisp = Hispanic.
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than for males, particularly for non-Hispanic-white and
non-Hispanic-black adolescents.
Equations based on the factor coefficients from Model

2 are presented in Table 3, and can be used to calculate
what is called a MetS risk score based on the clinically-
used components of MetS. For ease of clinical use, these
equations are based on the actual values of the variables
(except for BMI), and not the standardized measures
that went into the factor analysis. ROC analysis of this
resulting risk score indicates that is has excellent ability
to predict a traditional MetS classification (AUC=0.96;
Figure 1). It exhibits a moderate ability to discriminate
against elevated surrogate outcomes (hsCRP, uric acid,
fasting insulin), with AUC values equal to 0.71, 0.75, and
0.82, respectively (Figure 1). However, it has near
excellent ability to predict those individuals with ≥2 ele-
vations among the three surrogates (AUC=0.87). Most
Table 3 Equations for New Sex and Race/Ethnic-Specific Child

Males

Non-Hispanic White = −4.9310 + 0.2804 * BMI Z-score = 0.025

Non-Hispanic Black = −4.7544 + 0.2401 * BMI Z-score = 0.028

Hispanic = −3.2971 + 0.2930 * BMI Z-score = 0.031

Females

Non-Hispanic White = −4.3757 + 0.4849 * BMI Z-score = 0.017

Non-Hispanic Black = −3.7145 + 0.5136 * BMI Z-score = 0.019

Hispanic = −4.7637 + 0.3520 * BMI Z-score = 0.026
importantly, the predictive ability assessed here did not
systematically differ by sex or race/ethnicity (AUC values
ranged between 0.81 and 0.92 across the six groups; not
shown).
From this ROC analysis of ≥2 predictors, a reasonable

cut-off of this new continuous score appeared to be
around 0.75, if one wished to maintain a traditional
MetS binary classification (overall sensitivity=66%; speci-
ficity=87%). While using a cutoff is not necessarily advo-
cated here, defining adolescents with a score >0.75 as
having “MetS” allowed for a direct comparison of sensi-
tivity values with the traditional MetS criteria in predict-
ing the most severe adolescents, those with ≥2 elevations
among hsCRP, uric acid and insulin. When using 0.75, the
percent with this new “MetS” is increased considerably
compared to the traditional MetS classification across all
groups (Figure 2A). While racial/ethnic differences in
hood Metabolic Syndrome Risk Z-Score

7 * HDL + 0.0189 * SBP + 0.6240 * ln(Tri) + 0.0140 * Glu

4 * HDL + 0.0134 * SBP + 0.6773 * ln(Tri) + 0.0179 * Glu

5 * HDL + 0.0109 * SBP + 0.6137 * ln(Tri) + 0.0095 * Glu

6 * HDL + 0.0257 * SBP + 0.3172 * ln(Tri) + 0.0083 * Glu

0 * HDL + 0.0131 * SBP + 0.4442 * ln(Tri) + 0.0108 * Glu

3 * HDL + 0.0152 * SBP + 0.6910 * ln(Tri) + 0.0133 * Glu



Figure 1 ROC Curves for New Sex and Race/Ethnic-Specific Childhood Metabolic Syndrome Risk Score. ROC curves and area under the
curve (AUC) for childhood MetS Risk Score for non-Hispanic white, non-Hispanic black and Hispanic adolescent participants of NHANES in
identifying A) “traditional” MetS (ATP III adaptation, Ford 2007) or elevations in B) C-reactive protein (CRP), C) uric acid, D) fasting insulin, or E)
one or more elevations among CRP, uric acid or fasting insulin or F) two or more elevations in these 3 factors. * Elevated CRP = 4.5 or greater; **
Elevated Uric Acid = 5.5 for females; 7.0 for males; † Elevated Fasting Insulin = 16.
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prevalences remain when using this particular cutoff,
particularly for males, the racial/ethnic differences in
the ability of a MetS diagnosis to be sensitive and spe-
cific to elevated surrogate levels has diminished consid-
erably. As seen elsewhere [14,29,30], the traditional
MetS classification has an overall poor sensitivity, and
this sensitivity varies by sex and race/ethnicity
(Figure 2B). This traditional classification is particularly
insensitive for non-Hispanic-black adolescents. However,
a new MetS classification using a cutoff of 0.75 is more
sensitive, both overall and across sex and race/ethnicity,
with no respective clinically meaningful decrease in spe-
cificity (Figure 2C).

Discussion
The present analysis reveals racial/ethnic and sex differ-
ences among adolescents in loading weights to MetS
that result in improvements in the ability of MetS to
predict elevations in MetS-associated risk markers.
While the value of a diagnosis of MetS has been ques-
tioned as being more valuable than the sum of its parts
[46], the concept of MetS remains a frequently-used
research tool that has validity in being able to predict
future occurrence of T2DM in children [8] and CVD in
adults [17]. Most currently-employed criteria for diag-
nosing MetS in children and adolescents utilize some-
what arbitrarily-determined cut-off values for individual
components (Table 1) that appear to have racial/ethnic
biases [25,31] while other sets of criteria have used a
sum of z-scores, which does not account for the strong
correlations across the components and does not
account for possible differential influences of individual
components on the overall score [33]. Our current
approach offers multiple improvements on these prior
approaches by using a confirmatory factor analysis,
allowing for sex and racial/ethnic differences in the
weighting of individual components to the risk score.
Restated, this allows for the possibility that MetS mani-
fests itself differently between sex and racial/ethnic
groups in a way that may affect our ability to identify
MetS-associated risks. The sex- and race/ethnicity-speci-
fic differences result in unique equations to calculate the



Figure 2 Comparison of “Traditional” vs. “New” MetS. A: Prevalence of MetS among adolescents from NHANES 1999–2010 based on a
common pediatric adaptation of ATP-III MetS as compared to “New” MetS based on cutoff of new metabolic syndrome risk Z-score = 0.75. B and
C: Sensitivity and specificity ATP-III MetS and “New” MetS in predicting adolescents with two or more elevations of MetS-associated risk markers
(hsCRP, uric acid, and fasting insulin). NHW = Non-Hispanic White; NHB = Non-Hispanic Black; Hisp = Hispanic.
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risk score based on sex and racial/ethnic group. Once
this score has been more fully validated it could be
placed on an internet web site or smart phone applica-
tion to assist in clinical use, alerting clinicians and
patients regarding an adolescent’s risk score—along with
any risk implications specific to that individual’s sex and
racial/ethnic group.
In evaluating race/ethnicity-specific differences in this

score, we noted in particular variations in contributions
of lipid measures by sex and race/ethnicity to the single
MetS factor. This is perhaps not surprising, given that
non-Hispanic-black adolescents have lower levels of tri-
glycerides and higher levels of HDL at baseline and
although they exhibit worsening dyslipidemia with insu-
lin resistance, they are less likely to exhibit gross
abnormalities in lipids when using population-based cut-
off values [25,27]. This results in a lower prevalence of
MetS among non-Hispanic-black males using traditional
criteria and a poorer sensitivity for MetS to detect eleva-
tions in surrogates of MetS-related processes [14,29,30].
In the current analysis (Table 3), we noted that as com-
pared to the factor loadings for non-Hispanic-white
males, non-Hispanic-blacks had a higher loading of
HDL (0.51 non-Hispanic whites vs. 0.66 non-Hispanic
blacks) but a lower loading of triglycerides (0.62 vs.
0.50). This would suggest that lower levels of HDL may
be even more indicative of worsening MetS severity in
non-Hispanic-black males compared to non-Hispanic
whites while higher levels of triglycerides may not be as
strong an indicator in non-Hispanic-black males. Hispa-
nic males exhibited high loading factors of both HDL
and triglycerides, potentially suggesting that worsening
levels of both components are important indicators of
increasing degree of MetS severity. Non-Hispanic-white
males had high loadings for SBP (0.50) compared to
non-Hispanic blacks (0.33) and Hispanics (0.30). This is
interesting given that while elevated SBP is more com-
mon in non-Hispanic blacks and less common in Hispa-
nics compared to non-Hispanic whites [14], SBP appears
to have a greater relative importance to MetS in non-
Hispanic whites compared to the other groups.
Non-Hispanic-white females exhibited lower factor

loadings of HDL and triglycerides relative to either of
the other racial/ethnic groups, while Hispanic females
exhibited the highest loadings for HDL and triglycerides.
These data again suggest that changes in these lipid
values are more likely to indicate worsening of underly-
ing MetS among Hispanics. Overall, the poor model fit
indices for non-Hispanic-white females in particular,
may indicate that a one-factor model of MetS may not
be appropriate for this group.
It was notable that fasting glucose had a low factor

loading for all sex and racial/ethnic groups. While others
have included insulin in some manner as a measure in
factor analyses [5,33], we chose to use glucose because
the lack of standardized assays for insulin would impede
use of the risk score for clinical purposes. It has been
noted previously that glucose is maintained in a
relatively narrow range among obese children [39], and
this range was narrowed further in our analysis by
excluding diabetic individuals (glucose>125 mg/dL). We
ultimately elected to retain glucose in the score because
of the near universality of its inclusion in prior MetS cri-
teria [3,7-9,21-24] and its common use in screening for
undiagnosed diabetes [47].
Most telling of the accuracy of this new score would

be in its ability to predict future disease risk. The opti-
mal testing for such risk would require long-term data
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including childhood factors and adult disease outcomes.
Lacking these, such a score could also be used to assess
the quantity of markers associated with processes asso-
ciated with MetS-related risk, including adiponectin
(which appears to be in the causative pathway of insulin
resistance [20,48]) or markers of atherogenic dyslipide-
mia, including ApoB, small, dense LDL particles [49]. In
the present analysis, we instead assessed the accuracy of
the new score for its ability to identify individuals with
elevations in clinical measures that are part of processes
related to MetS. These measures were serum levels of
fasting insulin (as an assessment of insulin resistance
[13]), hsCRP (as an assessment of underlying inflamma-
tion [10]) and uric acid (as an assessment of oxidative
stress [11,12]). Comparing the score’s performance in
predicting these elevations to the more traditional MetS
diagnosis required using a cutoff value for the MetS risk
score itself—even though one of the benefits of such a
score is its lack of binary nature. We chose a cutoff of a
z-score of 0.75 based on the ROC curve for the score to
identify individuals with traditional MetS. Using this cut-
off, there was a higher prevalence of adolescents with
MetS in each sex/racial/ethnic group and in particular
among non-Hispanic-black males and females
(Figure 2A). While traditional MetS criteria (ATP-III
based) performed poorly in predicting elevations in
these measures (sensitivity 21-65%), the new risk score
(cut-off of 0.75) performed significantly better (sensitiv-
ity 43-81%) without clinically meaningful differences in
specificity (90-98% for traditional score vs. 78-92%).
This cut-off, if used, could help to identify a larger
number of at-risk children and adolescents that
currently-used MetS criteria—particularly among non-
Hispanic-black individuals.
It is important to note that our aim was not to ques-

tion the existence of the metabolic syndrome in general,
nor study in an exploratory fashion the precise number
of factors. We operated under the assumption that one
“MetS” factor exists in the pediatric population, and
under the assumption, we assessed whether the compo-
nents contribute to that factor differentially by sex and
race/ethnicity. Along those lines, we focused only on tra-
ditional MetS components that are common to almost
all existing MetS criteria based on cutoffs of these com-
ponents in order to ensure a clinically accessible risk
score that results from the analysis. The limited number
of components that comprise traditional MetS criteria
did not allow for examination of more than one factor.
Thus, our examination here was to examine the one-
factor model of MetS in adolescents that would thus
allow for a continuous representation of traditionally-
defined MetS while simultaneously allowing for sex and
race/ethnic differences within this one-factor model.
Our comparison of the predictive ability of this new
score to the traditional MetS diagnosis required the use
of a cutoff value. However, a clear benefit of this score is
its potential to identify elevated risk in an individual
who has a high score but would not be classified as hav-
ing MetS using traditional criteria based on having ele-
vations in components of MetS that did not exceed
population-based or perhaps even arbitrary thresholds
(see Additional file 1: Table S1 for examples). Impor-
tantly, this score could also be used to assess degree of
improvement during lifestyle modification treatment for
weight loss.
This study had several weaknesses. We utilized NHANES

data which, although powerful, are cross-sectional. Future
use of this score will need to utilize longitudinal data-
bases that include information regarding long-term dis-
ease outcomes. We used BMI z-score as an assessment
of obesity. While this has been done for prior MetS cri-
teria [8,39], it is generally recognized that markers of
visceral obesity (such as WC) are more strongly asso-
ciated with MetS risk than BMI [9]. Nevertheless, BMI
is known to be highly associated with MetS risk [8,42]
and has been noted in prior factor analyses of MetS
[1,33]. In addition, our MetS risk score that was devel-
oped using BMI z-score had near-perfect ability (ROC
AUC=0.96) to discriminate against an ATP-III-based clas-
sification that utilized WC percentile cut-offs, indicating
use of BMI in this instance is sufficient in the creation
of a continuous representation of the traditional MetS
diagnosis.

Conclusions
In summary, using confirmatory factor analysis, we have
demonstrated significant sex- and racial/ethnic differ-
ences in factor loading of MetS components that has
resulted in a novel sex- and race/ethnicity-specific MetS
risk score. This continuous score demonstrates strong
predictive ability to detect MetS-associated processes
while being less prone to racial/ethnic differences than
traditional pediatric MetS criteria. Future research is
needed to ascertain the ability of this score to identify
individuals at risk for long-term CVD and T2DM, as
well as its ability to monitor MetS in the setting of life-
style modification for obesity treatment.

Additional file
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