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Abstract

Cardiovascular disease (CVD) risk in type 2 diabetes (T2DM) is only partially reduced by intensive glycemic control.
Diabetic dyslipidemia is suggested to be an additional important contributor to CVD risk in T2DM. Multiple lipid
lowering medications effectively reduce fasting LDL cholesterol and triglycerides concentrations and several of
them routinely reduce CVD risk. However, in contemporary Western societies the vasculature is commonly exposed
to prolonged postprandial hyperlipidemia. Metabolism of these postprandial carbohydrates and lipids yields
multiple proatherogenic products. Even a transient increase in these factors may worsen vascular function and
induces impaired endothelial dependent vasodilatation, a predictor of atherosclerosis and future cardiovascular
events. There is a recent increased appreciation for the role of gut-derived incretin hormones in controlling the
postprandial metabolic milieu. Incretin-based medications have been developed and are now used to control
postprandial hyperglycemia in T2DM. Recent data indicate that these medications may also have profound effects
on postprandial lipid metabolism and may favorably influence several cardiovascular functions. This review
discusses (1) the postprandial state with special emphasis on postprandial lipid metabolism and its role in
endothelial dysfunction and cardiovascular risk, (2) the ability of incretins to modulate postprandial hyperlipidemia
and (3) the potential of incretin-based therapeutic strategies to improve vascular function and reduce CVD risk.

Review
Cardiovascular risk in type 2 diabetes
The prevalence of type 2 diabetes mellitus (T2DM) is
increasing worldwide at alarming rates. In the next 20
years the prevalence of T2DM is expected to be more
than 350 million people worldwide [1]. Cardiovascular
disease (CVD) accounts for more than two thirds of all
deaths in T2DM [2]. The risk of dying from CVD is
nearly twice as high in those with T2DM compared
with those of similar age without T2DM and this occurs
similarly in both diabetic women and men [3,4]. Consis-
tent with these effects on mortality, T2DM increases the
risk of coronary and peripheral artery disease by 2 to 4
fold, while the risk of stroke is increased 10 fold in indi-
viduals younger than 55 years of age if they have T2DM
[5-7].

Although the risk of major cardiovascular events in
diabetes is closely related to glycemic control in obser-
vational studies, therapeutic targeting of glycated hemo-
globin levels has not been effective in decreasing
cardiovascular risk outcomes [8-12]. Furthermore,
aggressive management of blood glucose levels per se
does not substantially improve most cardiovascular risk
factors commonly present in T2DM, including obesity,
hypertension or diabetic dyslipidemia indicating that
CVD risk management in T2DM requires more than
improved glucose control. One of the potential explana-
tions is that most diabetes medications show a neutral,
and in some cases even harmful effect on some cardio-
vascular risk factors. Notably, these risk factors are
already present at increased levels in individuals at high
risk for T2DM and contribute to their increased cardio-
vascular risk [13-16].

Postprandial lipids and cardiovascular risk
Historically, the associations between metabolic
abnormalities and cardiovascular disease have been
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studied largely during fasting conditions. However, the
important contribution of postprandial state to cardio-
vascular disease is increasingly being recognized, parti-
cularly in conditions of insulin resistance and T2DM.
The mechanisms of postprandial hyperglycemia, as well
as its clinical importance (including cardiovascular) risk
have been addressed in several excellent review articles
[17-20] and we will instead focus on postprandial
hyperlipidemia.
Multiple lipid lowering medications have been devel-

oped that effectively reduce fasting concentrations of
LDL cholesterol and triglycerides (TG). Although several
of these medications, particularly the statins, routinely
reduce CVD risk by 25-35%, there remains substantial
residual and absolute risk in higher CVD risk popula-
tions, such as in T2DM. This may be in part explained
by postprandial elevation in lipids. In fact, in contem-
porary post-industrialized societies most individuals
spend the majority of non-sleeping hours in the post-
prandial state. For example, as the typical American diet
consists of 3 or more meals per day and it takes more
than 8 hours for triglyceride concentrations to return to
fasting levels after a meal, postprandial triglyceride con-
centrations often remain elevated throughout the day.
Importantly postprandial triglyceride concentrations
may in fact be a better predictor of cardiovascular
events than fasting triglycerides. The adverse effect of
postprandial triglycerides is thought to be mediated by
proatherogenic lipolysis products of nascent triglyceride-
rich lipoproteins, such as remnant lipoproteins and fatty
acids, and even a transient increase in these factors may
worsen vascular function.
Several large observational studies have assessed the

association between non-fasting lipid concentrations and
cardiovascular risk (Table 1). In the first of these, the
association between non-fasting TG concentrations and
risk of coronary death was assessed in 37,546 Norwegian
male participants, aged 35-49 years, without a history of
CVD and diabetes [21,22]. This analysis detected a
weak, but statistically significant association between
non-fasting TG and coronary death during an average
of 9 years of follow-up [22]. When other coronary risk
factors were adjusted for, non-fasting TG remained a
significant independent predictor of coronary death only
in participants within the upper age range, i.e. between
45 and 49 years, and with higher cholesterol levels [22].
In the subsequent analysis performed 4 years later in an
even larger cohort of men and women, non-fasting TG
were not associated with coronary death in men but
showed a 5-fold risk of death from coronary heart dis-
ease in women with a non-fasting TG concentration of
3.5 mmol/l or more compared to those with a level of
less than 1.5 mmol, even after adjustment for traditional
coronary risk factors [21].

The Physicians’ Health Study, a prospective nested
case control study was conducted in 14,916 men aged
40 to 84 years, 85% of whom had baseline blood sam-
ples taken under non-fasting conditions [23]. The pri-
mary outcome was occurrence of myocardial infarction
(MI) during 7 years of follow-up. A key finding was that
cases (n = 266) had higher median non-fasting TG levels
compared to controls (n = 308). After simultaneous
adjustment for age, smoking status, HDL- and total cho-
lesterol levels, LDL diameter and a variety of coronary
risk factors, non-fasting TG concentrations significantly
predicted future risk of MI.
Non-fasting TG were also associated with myocardial

infarction (MI) and ischemic heart disease and death
after 26 years of follow-up in a prospective cohort of
almost 14,000 women and men in the Copenhagen
study [24]. The association was strongest among the
individuals with higher categories of non-fasting trigly-
ceride concentrations, but was weaker when TG levels
were examined as a continuous variable and predicted
MI in fully adjusted multivariate models only in women.
In an additional analysis of this cohort, cumulative inci-
dence of ischemic stroke was also directly proportional
to the levels of the non-fasting TG [25].
Since none of the above studies included measure-

ment of fasting lipids, it is not clear whether similar
relationships with CVD would be observed with fasting
TG values. However, the combination of a screening
visit without requirements to be in fasting condition
along with a protocol for strictly fasting enrollment vis-
its in 2,809 asymptomatic men who participated in the
Multiple Risk Factor Intervention Trial provided an
opportunity to compare the effects of both fasting and
non-fasting TG levels on non-fatal and fatal coronary
heart disease [26]. The analyses showed a mild associa-
tion of TG with CVD, which was similar for both fasting
and non-fasting TG after 8 years of follow-up for both
fatal as well as non-fatal coronary heart disease (CHD)
events and after 25 years of observation for fatal CHD
events [26]. A limitation of the study was that the time
since the last meal prior to the non-fasting visit blood
draw was not recorded.
In contrast, based on the time after the last meal for

baseline blood draws, 26,509 initially healthy women in
Women’s Health Study [27] were stratified into fasting (8
and more hours since last meal) and non-fasting groups
(meal within 8 hours prior to blood collection). After
adjustment for standard cardiovascular risk factors includ-
ing total and HDL cholesterol, diabetes status, body mass
index (BMI) and C-reactive protein (CRP), fasting TG
levels were not associated with incident cardiovascular
events over an 11-year follow-up period. On the other
hand, non-fasting triglycerides maintained a strong inde-
pendent relationship with future cardiovascular events
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even in the fully adjusted analyses. Moreover, after stratifi-
cation by time since the last meal, TG concentrations
measured 2-4 hours after the last meal were the strongest
predictor of CVD events.

Postprandial lipid metabolism and vascular risk
Triglycerides of dietary origin enter the lymph and then
systemic circulation as chylomicrons packaged together
with apolipoprotein B-48 (apoB-48). Following a fat
enriched meal, chylomicrons rapidly increase and lead to
pronounced triglyceride elevations peaking approximately
4 hours post-meal. In humans, the presence of apoB-48
distinguishes chylomicrons from smaller VLDL particles
carrying triglycerides of hepatic origin that contain apoli-
poprotein B-100 (apoB-100). Although increases in parti-
cles carrying apoB-48 explain about 80% of the
postprandial triglyceride increase, much of the increase in
the particle count is represented by particles containing
apoB-100 [28]. Both chylomicrons and VLDL lipoproteins
are cleared from the circulation after undergoing lipolysis
by several lipases, i.e. lipoprotein or hepatic lipases, produ-
cing fatty acids and smaller remnant lipoprotein particles
(RLP). Since these enzyme pathways have limited capacity,
there is competition in clearance between both VLDL and
chylomicrons [28]. One important consequence of chylo-
microns lipolysis is that it reduces the size of lipoproteins
sufficiently to permit entry into the arterial wall, where
proatherogenic properties of these modified lipoproteins
(described below) may alter vascular function.
RLPs after lipolysis become enriched in cholesterol,

deposit 5- to 20-fold more cholesterol into the vessel

wall per particle, and are preferentially retained in the
vessel wall where they are avidly taken up by macro-
phages [29-31]. RLPs have been shown to be proinflam-
matory causing endothelial dysfunction, and induction
of monocytes chemoattracting protein 1 (MCP-1)
expression by vascular smooth muscle cells [32,33].
Consistent with this, increased RLPs have also been
associated with coronary artery disease, and predict pro-
gression of atherosclerosis and development of cardio-
vascular events [34-36]. Postprandial changes in RLPs
closely correlate with postprandial changes in TG [37].
Apolipoprotein CIII (apoCIII) appears to be an impor-
tant inhibitor of RLPs clearance [38,39]. Furthermore,
recent in vitro and in vivo experimental data showed
that apoCIII may directly induce endothelial dysfunction
via inhibition of insulin-induced activation of Akt result-
ing in reduced nitric oxide (NO) release and subsequent
impaired vasodilation [40]. Possibly as a consequence,
high levels of apoCIII in plasma, or in VLDL particles,
are associated with increased risk of CVD [39,41].
Fatty acids, an additional product of postprandial TG

hydrolysis, may also contribute to increased cardiovascu-
lar risk. Increased non-esterified fatty acids (NEFA) con-
centrations are prospectively associated with both
cardiovascular morbidity and mortality [42,43]. NEFA
effects on the cardiovascular system include injury to
both the myocardium and increased susceptibility to
arrhythmias [44], and to the vasculature, by stimulation
of inflammatory processes, local production of reactive
oxygen species and impaired endothelial dependent
vasodilation [45-47]. Fatty acids could further facilitate

Table 1 Relative risk of cardiovascular outcomes with non-fasting triglyceride levels

Author (year) Population Follow-
up

Outcome(s) (number of events) Adjusted relative
risk (95% CI)

Tverdal et al.
(1989) [22]

37,546 men aged 35-49 years, without history of
CVD or diabetes

9 years
(mean)

coronary death (n = 369) 1.1 (1.0-1.2)

Stensvold et al.
(1993) [21]

24,535 women, aged 35-49 years, without history
of CVD or diabetes

14.6 years
(mean)

coronary death (n = 108) men: 1.1(1.0-1.2)
women: 1.6(1.2-2.1)

Stampfer et al.
(1996) [23]

14,916 men without history of CVD (85% non-
fasting)

7 years myocardial infarction, cases (n = 266) vs.
controls (n = 308)

1.4 (1.1-1.8)

Eberly et al.
(2003) [26]

2,809 male participants without clinical evidence of
CVD in the MRFIT study

25 years 8-year non-fatal or fatal CHD (n = 175)
25-year fatal CHD (n = 328)

1.6 (1.2-2.3) fasting
1.5 (1.0-2.1) non-
fasting
1.2 (1.0-1.6) fasting
1.3 (1.0-1.6) non-
fasting

Nordestgaard et
al. (2007) [24]

7,587 women and 6,394 men form the general
population in Copenhagen (Denmark)

26 years
(mean)

myocardial infarction (n = 1,793)
ischemic heart disease (n = 3,479)

1.2 (1.1-1.4) women
1.0 (1.0-1.1) men
1.1 (1.0-1.2) women
1.0 (1.0-1.1) men

Bansal et al.
(2007) [27]

26,509 healthy US women, 20,118 fasting, 6,391
non-fasting (<8 hours since last meal)

11.4 years
(mean)

cardiovascular events (n = 1001) 1.1 (0.9-1.3) fasting
1.7 (1.2-2.4) non-
fasting
4.5 (2.0-10.2) 2-4 hrs
since last meal
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development of atherosclerotic plaque through stimula-
tion of inflammatory processes in macrophages [48].

The postprandial state and endothelial dysfunction
Endothelial dysfunction is believed an important link
between the postprandial state, atherosclerosis and
CVD. It is characterized by impaired endothelium-
dependent vasodilation and increased pro-coagulant and
pro-inflammatory activity [49]. Coronary endothelial
dysfunction has been shown to predict cardiovascular
events in patients with and without coronary artery dis-
ease [50-52]. Although coronary endothelial dysfunction
is commonly present in individuals with a long history
of T2DM, it is also present in those with insulin resis-
tance, prediabetes and/or new onset T2DM [53,54]. Stu-
dies have demonstrated that endothelial function in
both healthy subjects and those with T2DM is altered
by meals with high amounts of fat or carbohydrates
[55,56] and is inversely related to both glucose and TG
concentrations [56-58]. Since endothelial dysfunction is
a diffuse process, measurement of endothelial function
in peripheral arteries can be used as a surrogate of cor-
onary endothelial function. Peripheral endothelial func-
tion correlates well with coronary endothelial
vasodilation and is reduced in patients with cardiovascu-
lar risk factors such as obesity, hypercholesterolemia,
hypertension and diabetes [54,59-62]. Lower peripheral
endothelial function also predicts progression of carotid
atherosclerosis in the general population as well as car-
diovascular morbidity and mortality in populations with
high CVD risk [63-68].

Endogenous incretin hormones in regulation of glucose,
lipid and vascular responses
The incretin hormones, glucagon-like peptide-1 (GLP-1)
produced by L-cells in the distal gut, and glucose-
dependent insulinotropic polypeptide (GIP) produced by
duodenal K-cells in response to ingested nutrients, are
important regulators of glucose homeostasis [69]. Incre-
tins are secreted into the circulation within minutes in
response to a meal and upon release they bind to speci-
fic G-protein coupled receptors present on b-cells and
other target tissues [70,71]. GLP-1 is secreted in greater
concentrations than GIP and is considered more physio-
logically relevant in humans [72]. In b-cells, GLP-1
enhances glucose-dependent insulin secretion, increases
insulin synthesis, and in animals stimulates b-cell prolif-
eration and inhibits apoptosis [69]. GLP-1 also reduces
glucose concentrations through inhibition of pancreatic
a-cell glucagon secretion and indirectly via inhibition of
gastric emptying and appetite [73-75]. Importantly, in
addition to slowing gastric emptying, GLP-1 may also
decrease intestinal lymph flow, triglyceride absorption,
and apolipoprotein synthesis adding to a complex

combination of mechanisms that may limit the release
of triglycerides into the circulation after lipid-containing
meals [76] (Figure 1). Consistent with this, administra-
tion of GLP-1 or GLP-1 receptor agonists in humans is
associated with significant reduction of postprandial
lipids (Table 2). Intravenous infusion of GLP-1 abol-
ished the rise in postprandial triglyceride concentrations
in healthy men [77]. Furthermore, it also decreased fast-
ing and postprandial NEFA concentrations [77] in
agreement with a previous report on the effect of 6-
week continuous subcutaneous GLP-1 infusion in
patients with T2DM [78] (Table 2).
Notably, the incretin effect appears reduced or lost in

individuals with impaired glucose tolerance and T2DM
[79,80]. This is most commonly ascribed to reduced
endogenous levels of GLP-1. However, as GLP-1 recep-
tor signaling remains intact, continuous administration
of GLP-1 effectively reduces blood glucose levels in
patients with T2DM [81,82].
Recent studies indicate that GLP-1 may also exert

beneficial effects on the cardiovascular system indepen-
dent of its effects on glucose, lipid or energy metabolism
[83]. In vitro, the active form of GLP-1 (7-36) induced
endothelium-dependent vasodilation in preconstricted
pulmonary arteries [84]. In vitro, GLP-1 inhibited tumor
necrosis factor alpha (TNF-a) induced plasminogen
activator inhibitor 1 (PAI-1) gene and protein expres-
sion in endothelial cells [85]. In vivo, administration of
GLP-1 improved endothelial function in salt-sensitive
hypertensive rats [86]. Of great relevance, pharmacologi-
cal levels of GLP-1 improved endothelial function in
healthy individuals as well as in T2DM patients with
stable coronary artery disease [87,88] and had a protec-
tive effect on postprandial endothelial function [89]. In
addition to these vascular effects, GLP-1 or GLP-1
receptor agonists demonstrated multiple beneficial
actions on the heart including protection of myocar-
dium from ischemia in rats [90], improvement of car-
diac function in rats with congestive heart failure [91]
and attenuation of ischemic left ventricular dysfunction
during stress echocardiography in patients with coronary
artery disease [92].

Incretin-based therapies to reduce postprandial
dyslipidemia and improve endothelial dysfunction
Although GLP-1 is highly effective in lowering blood
glucose and has promising cardiovascular effects, its
therapeutic potential is severely limited because of rapid
degradation by dipeptidyl peptidase 4 (DPP-4) to GLP-1
(9-36) which does not stimulate GLP-1 receptor and
therefore does not exert the metabolic effects of active
GLP-1 [93]. Therefore, the therapeutic focus has been
directed towards compounds that either mimic the
activities of GLP-1 while being less susceptible to
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Figure 1 A scheme of the complex effect of incretin activity on postprandial lipids. GLP-1 or GLP-1 receptor agonists acting on the central
nervous system increases satiety and therefore reduces nutrient intake. Inhibitory GLP-1 activity on gastric emptying both further increases satiety
and slows entry of nutrients including lipids into the intestine. Triglyceride (TG) absorption into intestinal cells is further reduced because of
incretin-induced inhibition of gastric lipase. In the intestinal cells, incretins also decrease production of apolipoproteins (Apo) B-48 and A-IV
thereby inhibiting intestinal biosynthesis of triglycerides and their secretion into blood. Transport of lipids from intestinal cells to blood may be
further reduced by inhibitory effect of incretins on intestinal lymph flow. This combination of effects leads to lowering of postprandial lipid levels
in blood.

Table 2 The effect of incretins or incretin based therapies on postprandial lipid metabolism in humans

Compound Author Intervention Design Study population Findings

GLP-1 Meier et al.
(2006) [77]

390-min IV infusion randomized, double
blinded, placebo-

controlled crossover
study

14 healthy male
volunteers

Reduced postprandial triglyceride and
NEFA levels

GLP-1 Zander
et al.
(2002) [78]

6-week continuous SQ
infusion

randomized, single-
blinded, placebo

controlled parallel study

20 patients with T2DM
(10 in each group)

Decreased fasting and average 8-h post-
meal NEFA levels

Exenatide Cervera
et al.
(2008) [98]

6-hour continuous IV
infusion

non-randomized single-
blinded crossover study

vs. control

12 subjects with T2DM Reduced triglyceride response to mixed
meal

Exenatide Schwartz
et al.
(2008) [99]

2-week SQ injection twice
a day

randomized, double-
blinded, placebo-

controlled parallel study

30 patients with
inadequately controlled

T2DM

Decreased morning and evening
postprandial triglyceride excursions, no

effect after midday meal

Exenatide Schwartz
et al.
(2010)
[103]

Single SQ dose just before
a high-fat meal

randomized, double-
blinded, placebo-

controlled crossover
study

35 patients with
impaired glucose
tolerance or recent

T2DM

Abolished responses of triglyceride,
NEFA, RLPs, apoB48 and apoCIII to meal

Exenatide
or
Sitagliptin

DeFronzo
et al.
(2008)
[100]

2-week SQ exenatide
injection twice a day or
sitagliptin orally once/day

double-blinded
randomized crossover

study

61 patients with T2DM
treated with a stable
regimen metformin

Reduced average 4-h post-meal
triglyceride response after both.

Reduction greater after exenatide (by
~10%)

Vildagliptin Matikainen
et al.
(2006)
[107]

4-week oral dose 50 mg
twice/day

double-blinded
randomized placebo-

controlled parallel study

31 drug-naïve T2DM
patients (n = 16

allocated to Vildagliptin)

Decreased postprandial TG-rich
lipoproteins (total and chylomicrons,

apoB-48)

SQ, subcutaneous; IV, intravenous;
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degradation by DPP-4 or that reduce degradation of
endogenous GLP-1 (and GIP) by inhibiting DPP-4.
However, the effect of these therapies on CVD is
unknown.
Exenatide (exendin-4), the first FDA approved GLP-1

mimetic, has only 53% homology to the human GLP-1
amino acid sequence; as such, it is relatively more resis-
tant to DPP-4, reaching maximum levels approximately
2 hours following subcutaneous injection [94]. Exenatide
reproduces many of the action of GLP-1, such as
enhancement of glucose-induced insulin secretion, inhi-
bition of glucagon release, reduction of fasting and post-
prandial glucose concentrations, delay of gastric
emptying, inhibition of appetite and induction of weight
loss [94-97]. Acute infusion or short-term treatment
with exenatide twice a day abolished increments in post-
prandial triglyceride concentrations in patients with
T2DM [98-100] (Table 2). Long-term treatment with
exenatide was associated with significant improvement

in multiple cardiovascular risk factors including systolic
and diastolic blood pressure, fasting triglycerides, as well
as total, LDL- and HDL-cholesterol [101]. Recent
experimental data indicate anti-atherosclerotic effects of
exenatide involving inhibition of inflammatory responses
of atherosclerotic plaque macrophages [102].
To assess the effects of typical clinical dosing of exe-

natide on postprandial lipid and lipoprotein excursions,
we conducted a double-blinded, randomized, placebo-
controlled, crossover study in participants with IGT or
with recent onset T2DM in good control with diet alone
[103]. The intervention was a single subcutaneous injec-
tion of exenatide (10 μg) or normal saline just prior to a
high-caloric (600 kcal/m2), fat-enriched breakfast meal
(45% fat, 40% carbohydrates, 15% proteins). Blood was
collected for lipid assays over an 8 hour postprandial
period. The single dose of exenatide strongly suppressed
postprandial elevation of TG, apoB-48, RLP-TG and
RLP-cholesterol (Figure 2) as well as apoCIII, whereas

Figure 2 The effect of exenatide or placebo on postprandial concentrations of triglycerides (panel A) and apolipoprotein B-48
(apoB48, panel B) in serum, and remnant lipoprotein triglycerides (RLP-TG, panel C) and cholesterol (RLP-C, panel D) in plasma. The
average effect of study medication (Drug) and the interaction between the effects of meal and drug (Drug*Time) were evaluated by repeated
measures ANCOVA (adjusted for test sequence and glucose tolerance status). Symbols denote statistically significant (p < 0.05) difference
between exenatide and placebo (‡) and versus pre-meal value (*) at each specified time points tested by post-hoc multiple comparison analyses.
Number of subjects included in the analyses: triglycerides, n = 35; RLP-TG, n = 34; RLP-C, n = 31; apoB48, n = 28 (Schwartz et al., Atherosclerosis
2010, 212(1):217-222 [103]).
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declines in NEFA were less pronounced but persisted
longer in exenatide compared with placebo (Table 2).
These effects of exenatide were similar in those with
IGT or recent onset T2DM demonstrating that exena-
tide profoundly inhibits postprandial excursions of
proatherogenic lipids and lipoproteins and may reduce
cardiovascular risk in those early in the evolution of dia-
betes. These lipid and lipoprotein lowering effects of
exenatide were present regardless of concomitant ther-
apy of dyslipidemia with statins.
We also tested whether the metabolic effects of exena-

tide would translate to improved postprandial endothe-
lial dysfunction [104]. Twenty eight of the study
participants successfully completed both pre- and post-
meal measurement of peripheral endothelial function
using finger plethysmography (peripheral arterial tono-
metry - PAT). A single exenatide administration was fol-
lowed by significant improvement of postprandial
endothelial function compared to the placebo treatment
(Figure 3). Two thirds of exenatide’s effect was
explained by changes in triglyceride concentrations indi-
cating that modulation of postprandial lipid metabolism
played a major role in observed improvement of
endothelial function. In agreement with previous reports
of postprandial endothelial dysfunction in individuals
with T2DM [56], our data also reinforced increased sus-
ceptibility of diabetic individuals to postprandial impair-
ment of endothelial function. Furthermore, they
suggested that this susceptibility develops very early
after onset of T2DM as it was absent in persons with
IGT and present in the recently diagnosed T2DM

subjects with good glycemic control. Importantly, the
benefit of exenatide on postprandial endothelial function
was similar among those with IGT and diabetes, i.e. it
prevented the postprandial decrease of endothelial func-
tion in T2DM and induced an increase in endothelial
vasodilation of similar magnitude in IGT, demonstrating
that exenatide therapy beneficially influences endothelial
function in both prediabetes and early stages of T2DM.
Clinical studies with DPP-4 inhibitors provide addi-

tional support for incretin-based therapies as an effective
tool in ameliorating postprandial dyslipidemia. These
compounds only moderately increase endogenous GLP-
1 levels and as such they do not have a detectable effect
on gastric emptying rate [105,106]. Despite this, the abil-
ity of the DPP-4 inhibitor sitagliptin to reduce postpran-
dial TG levels was only about 10% less than exenatide
in a two-week cross-over study in patients with T2DM
[100] (Table 2). In a separate double-blinded placebo-
controlled study in drug-naïve T2DM patients, Matikai-
nen et al. [107] demonstrated that 4-weeks therapy with
another DPP-4 inhibitor, vildagliptin, also decreased
postprandial TG levels (Table 2). They also demon-
strated that the reduction in triglycerides was accounted
for by reduced TG in chylomicrons and lower apoB-48.
In contrast, there were not significant changes in VLDL
TG or apoB-100 levels [107]. A direct inhibitory effect
of incretins on intestinal lipid secretion is further sup-
ported by data showing that intestinal production of
apoB-48 both in vitro and in vivo in rodents was pro-
foundly reduced by both exendin-4 and sitagliptin [108].
A summary of these incretin-mediated mechanisms con-
tributing to lowering of postprandial lipids is illustrated
in Figure 1.

Prospects for incretin-based therapies to reduce
cardiovascular risk
Since more intensive glycemic control with standard
diabetes medications has been largely ineffective in
reducing the high residual cardiovascular risk in indivi-
duals with T2DM, aggressive treatment of other cardiovas-
cular risk factors appears to be the logical next step in the
effort to decrease cardiovascular risk in this group. In fact,
the results of the STENO-2 study show that a target-driven,
long-term, intensified intervention aimed at multiple risk
factors in patients with type 2 diabetes and microalbumi-
nuria, may reduce the risk of cardiovascular events by
about 50 percent [109]. An increasing body of clinical evi-
dence indicates that incretin-based therapies not only lower
fasting and postprandial glucose, but also improve a wide
variety of traditional cardiovascular risk factors including
obesity, high blood pressure as well as fasting and postpran-
dial lipid and apolipoprotein concentrations
[99-101,107,110-113]. Importantly, the effect of incretins
on postprandial lipid excursions appears acute and

Figure 3 The effects of exenatide and placebo on postprandial
endothelial function. Endothelial function was measured before
and after a single high-fat breakfast meal. Participants received
placebo and exenatide on separate visits in a cross-over design.
Post-meal PAT index was significantly higher (demonstrating
improved endothelial function) during the exenatide phase
compared with the placebo phase (p = 0.0002, adjusted for pre-
meal PAT index, treatment sequence and glucose tolerance status)
(Koska et al., Diabetes Care 2010, 33(5):1028-1030 [104]).
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therefore may be additive to lipid benefits of decreased
appetite and body weight reduction that are characteristic
of more chronic therapy with incretins or incretin analo-
gues [77,98,103]. Moreover, some experimental data in
humans show that increased GLP-1 activity may directly
stimulate endothelial-mediated vasodilation independently
of known metabolic actions of GLP-1 [87,88,104]. Exendin-
4 also attenuated atherosclerotic lesions in mice model of
atherosclerosis [102]. The attenuation was associated with
reduced monocyte/macrophage accumulation in the arter-
ial wall indicating that suppression of vascular inflamma-
tion may represent another direct cardiovascular benefit of
incretin-based therapy [102].

Conclusions
Although this review highlights clinical and experimen-
tal data that provide evidence for favorable cardiovascu-
lar effects of incretins, the lack of outcome studies and
the short history of clinical use of these agents limit our
knowledge about their clinical cardiovascular efficacy.
Large multi-center longitudinal studies designed not just
to prove CVD safety as shown in two recent meta-ana-
lyses of short-term randomized clinical trials of exena-
tide [114] or sitagliptin [115], but to demonstrate
cardiovascular benefits of incretin-based strategies,
appear warranted and have recently been initiated
(Table 3). In support of this goal, post-hoc analyses
within the ACCORD cohort indicated that the only dia-
betes medication associated with a decrease in CVD
events was exenatide [116]. Furthermore, a retrospective
study using LifeLinkTM database of medical and phar-
maceutical insurance claims for June, 2005 through
March, 2009 found that 39,275 patients with type 2 dia-
betes were treated with exenatide twice daily were less
likely to have a CVD event, lower rates of CVD-related
and all-cause hospitalization compared to 381,218
patients treated with other glucose-lowering therapies
[117]. Moreover, mathematical models accounting for
the constellation of CVD risk factors affected by incretin
analogs (exenatide in this specific case) predict greater
reductions in major adverse cardiovascular events than
glucose-lowering regimens without incretins [118].
However, the results of ongoing studies will clarify

whether incretin-based therapies live up to their pro-
mise as vasculoprotective agents.
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