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Abstract
Background
Diabetes is known to impair the number and function of endothelial progenitor cells in the circulation, causing structural and functional alterations in the micro- and macro-vasculature. The aim of this study was to identify early diabetes-related changes in the expression of genes that have been reported to be closely involved in endothelial progenitor cell migration and function.

Methods
Based on review of current literature, this study examined the expression level of 35 genes that are known to be involved in endothelial progenitor cell migration and function in magnetically sorted Lin-/VEGF-R2+ endothelial progenitor cells obtained from the bone marrow of Akita mice in the early stages of diabetes (18 weeks) using RT-PCR and Western blotting. We used the Shapiro-Wilk and D’Agostino & Pearson Omnibus tests to assess normality. Differences between groups were evaluated by Student’s t-test for normally distributed data (including Welch correction in cases of unequal variances) or Mann–Whitney test for not normally distributed data.

Results
We observed a significant increase in the number of Lin-/VEGF-R2+ endothelial progenitor cells within the bone marrow in diabetic mice compared with non-diabetic mice. Two genes, SDF-1 and SELE, were significantly differentially expressed in diabetic Lin-/VEGF-R2+ endothelial progenitor cells and six other genes, CAV1, eNOS, CLDN5, NANOG, OCLN and BDNF, showed very low levels of expression in diabetic Lin-/VEGF-R2+ progenitor cells.

Conclusion
Low SDF-1 expression may contribute to the dysfunctional mobilization of bone marrow Lin-/VEGF-R2+ endothelial progenitor cells, which may contribute to microvascular injury in early diabetes.
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Abbreviations
BMBone marrow


BSABovine serum albumin


DiI-Ac-LDL1, 1\'-dioctadecyl – 3, 3, 3\', 3\'-tetramethyl-indocarbocyanine perchlorate acetylated low density lipoprotein


ECsEndothelial cells


EPCsEndothelial progenitor cells


GAPDHGlyceraldehyde-3-phosphate dehydrogenase


Lin-/VEGF-R2+ EPCsLin-/VEGF-R2+ endothelial progenitor cells


LinHematopoietic lineage


PBPeripheral blood


PVDFPolyvinyl difluoride membrane


SDStandard deviation


SDF-1Stromal derived factor-1


VEGF-R2Vascular endothelial growth factor-receptor 2.




Background
The inner lining of blood vessels, the endothelium, is made up of a single layer of endothelial cells (ECs)[1], which acts as a barrier between the blood and the surrounding tissue. It prevents inflammatory cell infiltration, modulates vascular tone and controls smooth muscle cell proliferation[2–4]. Damage to the endothelium can be repaired by proliferation and migration of nearby mature ECs[5, 6], which have limited regenerative capacity[7, 8].
Endothelial progenitor cells (EPCs) originating from the bone marrow (BM) can migrate to the peripheral blood (PB)[9, 10] and repair injured endothelium[11, 12]. These EPCs play an important role in regenerating the endothelium through migration, proliferation, differentiation and by secreting pro-angiogenic cytokines[13]. EPCs express a range of cell surface markers, among them stem cell markers (CD34, CD133) and endothelial markers (CD146, vWF, VEGF-R2)[14, 15]. As no single or unique marker for EPCs has been identified, researchers use a range of markers and phenotypical properties to define them[16, 17]. Regardless of this lack of accuracy, the term "EPC" is used and it is acknowledged that "EPC" refers to a heterogeneous population of cells rather than a single population[17–19].
Diabetes mellitus, characterized by chronic hyperglycemia[20], is a metabolic condition that strongly affects EPCs. Diabetic patients have reduced numbers of EPCs[21, 22] in the PB and the function of such EPCs isolated from PB with respect to proliferation, tube formation and adhesion is impaired[23, 24]. Most importantly, EPCs from diabetic individual are less competent in repairing vascular injuries[23, 25, 26]. Not only impaired function but also reduced mobilization from the BM to the PB has been documented[22, 24] in diabetic patients. Both the decreased number of EPCs and their impaired function have been proposed to be involved in the pathogenesis of vascular complications in diabetes[21, 23, 27].
Since most studies to elucidate molecular mechanisms of EPC impairment in diabetes have been conducted in EPCs isolated from the PB in humans with a long history of diabetes, little is known about the changes occurring in EPCs located within the BM in the early stages of diabetes. A subset of BM derived EPCs, which are phenotypically characterized as Lin-/VEGF-R2+ cells were recently described[28]. These Lin-/VEGF-R2+ endothelial progenitor cells (abbreviated as Lin-/VEGF-R2+ EPCs in this study) have typical properties of EPCs such as formation of cobblestone-shaped colonies, Dil-acLDL uptake, lectin binding, expression of typical EPC markers such as VEGF-R2 and CD34, lack of expression of CD31, CD45, CD14 and CD115 and incorporation into damaged blood vessels in vivo[28] .
We have recently shown[28] that BM derived Lin-/VEGF-R2+ cells isolated from diabetic mice showed neither functional differences nor reduced proliferative capacity compared with such cells isolated from non-diabetic mice. However, we found a distinct defect in mobilization of Lin-/VEGF-R2+ cells from BM to the PB in diabetic mice. To explore the molecular mechanisms underlying this defect in mobilization of BM Lin-/VEGF-R2+ EPCs in spontaneously diabetic mice, the current study aimed to evaluate differential gene expression of 35 genes that were reported to be closely involved in Lin-/VEGF-R2+ EPC mobilization and function.

Methods
Animals
All animal studies were conducted in accordance with the New South Wales Animals Act (1985). Approval was issued by The University of Sydney Animal Ethics Committee (Approval number: K17/9-2007/3/4664). All efforts were made to minimize animals suffering. The animals, Ins2Akita mice (Akita mice), were obtained from The Jackson Laboratory (Bar Harbor, ME, USA). The Akita mouse carries a dominant point mutation in the Insulin 2 gene on chromosome 7 resulting in the development of diabetes at approximately 4 weeks after birth[29] with almost 100% penetrance[30]. As female mice develop diabetes more slowly and less stably compared with males[29], only male mice heterozygous for the Ins2Akita allele (diabetic group) as well as male mice homozygous for the wild type Ins2 allele (non-diabetic mice) were used in this study. Presence of the Ins2Akita allele or the wild type Ins2 gene was confirmed by RFLP analysis[30]. Once diabetes was established (blood glucose level > 13.3mmol/l[31]), mice were monitored weekly for changes in body weight and blood glucose levels for 18 weeks. The blood glucose level was measured using Accu-Chek Performa (Roche, Germany). No supplemental insulin was given. Only mice having blood glucose levels consistently ≥ 13.3 mmol/l were used in this study. Eight diabetic and 8 non-diabetic mice were used.

BM collection
After euthanizing mice with CO2, the femorae and tibiae of both legs were immediately excised and the diaphyses flushed using a 25g needle and 8 ml of IMag™ buffer (BD, Cat no. 552362). The collected cells were placed on ice. After centrifugation (400 rcf, 5 min), the cell pellet was resuspended in 2 ml red cell lysing buffer (Sigma, Cat no. R7757). After 5 min incubation and centrifugation (400 rcf, 5 min), the cell pellet was resuspended in 10 ml of IMag™ buffer and washed twice. Cells were eventually filtered using a 40 μm nylon cell strainer (BD, Cat no. 352340), centrifuged (400 rcf, 5 min) and resuspended in 2 ml of IMag™ buffer. After cell counting (TC10, BioRad) and viability assessment using the trypan blue exclusion assay, cells were placed on ice for the isolation of Lin-/VEGF-R2+ cells.

Immunomagnetic bead separation of BM Lin-/VEGF-R2+ endothelial progenitor cells
BM cells were incubated with NA/LE rat anti-mouse CD16/CD32 (Fc-block, 1 μg/106 cells, BD, Cat no. 553140) for 15 min. After Fc-block, BM cells were incubated with a solution containing an APC mouse lineage antibody cocktail (BD, Cat no. 558074) and a FITC rat anti-mouse Flk-1/VEGF-R2 antibody (BD, Cat no. 560680). After 20 min incubation, cells were centrifuged (400 rcf, 5 min) and washed twice using cold IMag™ buffer. Cells were incubated with magnetic beads for 30 min at 4°C (APC magnetic particles-DM; BD, Cat no. 557932). The APC mouse lineage cocktail was used to separate Lin+ cells from the whole of bone marrow cells, i.e. hematopoietic lineage cells such as T lymphocyes, B lymphocytes, monocytes/macrophages, granulocytes, and erythrocytes cells containing surface antigens such as CD3e, CD11, CD45R/B220, Ly-76, Ly-6G and Ly-6C. The Lin+ depletion was conducted using a Dynal MPC-S magnetic separator (Invitrogen, Cat no. 12020D). The Lin- fraction was further incubated with anti-FITC beads (Miltenyi Biotec, Cat no. 130-048-701) for 30 min at 4°C. The fraction of Lin-/VEGF-R2+ EPCs was obtained via a positive selection step using the magnetic separator. For RNA isolation, fractions of both Lin+ and the Lin-/VEGF-R2+ cells were collected, washed in PBS and centrifuged. Cell pellets were re-suspended in 100 μl of RNA later solution (Qiagen, Cat no. 76104) and snap-frozen in liquid nitrogen. Cells destined to undergo protein analysis were directly snap-frozen and stored at -80°C for further use.

Group design
Four experimental groups were established: 1) Lin+ cells from non-diabetic animals, 2) Lin+ cells from diabetic animals, 3) Lin-/VEGF-R2+ cells from non-diabetic animals and 4) Lin-/VEGF-R2+ cells from diabetic animals. The Lin+ cells were used as an internal reference to identify differential gene expression occurring not exclusively in Lin-/VEGF-R2+ cells. This setup allowed us to distinguish differential gene expression which specifically occurred in diabetic BM derived Lin-/VEGF-R2+ EPCs from that which may also occur in other phenotypes of BM cells. Hence, only significant changes in gene expression observed in diabetic vs. non-diabetic Lin-/VEGF-R2+ EPCs that did not occur in the Lin+ population were considered in the final analysis.

RNA isolation
RNA isolation was performed at room temperature using the RNeasy Mini Kit (Qiagen, Cat no. 74104) according to the manufacturer’s instructions. Isolated RNA was snap-frozen and stored at -80°C for further use. RNA concentration was measured using a Nanodrop 1000 (Nanodrop Products, DE, USA), integrity was assessed using the BioRad Experion automated electrophoresis system (BioRad, CA, USA) on a RNA StdSens Chip (BioRad Cat no. 700–7159).

Reverse transcription
Reverse transcription was done using the iScript cDNA synthesis kit (BioRad, Cat no. 170–8890). In brief, 4 μl of 5× iScript reaction buffer, 1 μl iScript reverse transcriptase, 500 ng RNA and water up to a total reaction volume of 20 μl were mixed. The reverse transcription program was designed as follows: 25°C for 5 min, 42°C for 60 min, 85°C for 5 min followed by 4°C at a hold step. Reactions were performed in a PCR machine (HBPX220, Hybaid, UK). The finial 20 μl cDNA product was diluted into 160 μl total volume using MQ water.

Real time PCR
Primer sequences for RT-PCR were obtained fromhttp://​pga.​mgh.​harvard.​edu/​primerbank and fromhttp://​primerdepot.​nci.​nih.​gov/​. In silico analyses were performed to identify the amplicon size and suitability of the primer pairs. An overview of genes tested and primers used is shown in Additional file1: Table S1. All primers had a melting temperature of approximately 61°C and were tested before RT-PCR using gel electrophoresis to visualize amplicons. For testing primers, a total reaction volume of 10 μl comprised of 5 μl Super Mix (SsoFast EvaGreen Supermix, BioRad, Cat no. 172–5200), 1 μl of 4 μM forward and reverse primer mixture, 1 μl of cDNA and 3 μl water. PCR steps used were similar to the RT-PCR program used later: 95°C for 30 s, 40 cycles of 95°C for 5 s then 60°C for 20 s. This was followed by a melting curve step starting from 65°C to 95°C each step lasting 30s, ramp rate was 0.5°C/s. PCR products were analyzed in 2% agarose (in TBE buffer) gels to verify amplicon size.
RT-PCR was performed on a LightCycler 480 (Roche, Switzerland) using 384 well plates. Each group included seven individual samples, each individual sample was replicated once (technical replicate). The program was as follows: 95°C for 5 min, 40 cycles of 95°C for 10 s, 60°C for 20 s and 72°C for 20 s. Ramp rate was 4.8°C/s. Each well contained 5 μl Express Sybr Green (Invitrogen, Cat no. 10000162), 0.5 μl water, 0.5 μl of 4 μM forward and reverse primer mixture and 4 μl of the diluted sample cDNA. Mouse glyceraldehyde-3-phosphate dehydrogenase (mGAPDH)[32, 33] and 18S ribosomal RNA (18srRNA) were used as reference genes. The two reference genes were chosen using "BESTKEEPER" software (http://​rest-2009.​gene-quantification.​info/​), taking into account the information that there are no significant differences in mGAPDH and 18srRNA. Since progenitor cells from bone marrow were used, it was not clear whether one single chosen reference gene would be expressed. GAPDH content may be altered in animal models of diabetes, however, not all mouse strains are affected and in C57/BL6 mice mGAPDH has been successfully used as reference gene[32, 33]. CT-values were computed using the 2nd order derivation method, CT values ≥ 35 were excluded from the analysis. Data analysis was performed using the RT2 profiler PCR array data analysis available onhttp://​pcrdataanalysis.​sabiosciences.​com/​pcr/​arrayanalysis.​php.

Protein isolation and Western blot
For Western blot analysis, 8 samples from each group were used. The isolated cells were incubated and lysed for 30 min at 4°C in RIPA buffer (Sigma, Cat no. 127K6009) containing protease inhibitor (Complete mini; Roche, Cat no. 046931240010; 1 tablet per 10 ml RIPA buffer). Buffer volume was adjusted to a concentration of 5 × 104 cells/μl RIPA buffer. The lysed cells were centrifuged at 12,000 rcf for 20 min at 4°C. The supernatant containing the protein was aliquoted (26 μl) and stored at -20°C for further use.
Gel-electrophoresis to separate proteins according to their size was done using 2,2-Bis(hydroxymethyl)-2, 2′, 2″-nitrilotriethanol (Bis-Tris) polyacrylamide gels with a gradient from 4 to 12% under denaturing conditions (Nupage, Invitrogen, Cat no. NP0335) using 2-(N-morpholino) ethanesulfonic acid sodium dodecyl sulfate (MES-SDS, Invitrogen, Cat No NP0002) as running buffer. Before loading the gel wells, 26 μl protein sample, 10 μl loading buffer (Invitrogen, Cat no. NP0007), 4 μl 500 mM DL-dithiothreitol (DTT; Sigma, Cat no. D9779-10G) were mixed and kept at 70°C for 10 min to denature the protein and after this kept on ice for 5 min. After gel-electrophoresis, gels were removed from the running chamber and placed on a 0.2 μm polyvinyl difluoride (PVDF) membrane (Invitrogen, Cat no. LC2002). The protein transfer was done using a wet transfer system (BioRad Mini Trans-Blot, Cat no. 170–3930). After the transfer, the PVDF membranes were washed for 5 min using water and then for 10 min using TBST: tris (hydroxymethyl) aminomethane (TRIS) buffer, 150 mM sodium chloride and 0.1% polyoxyethylene (20) sorbitan monolaurate (TWEEN 20). A blocking step followed using 5% bovine serum albumin (BSA, Sigma, Cat no. 9418) in TBST and incubating the PVDF membrane for 1 h at room temperature. After washing the membrane twice in TBST, the incubation with the primary antibody (SDF-1; 1:2000, Abcam, Cat no. ab25117) in TBST and 1% BSA followed over night at 4°C. The next day the primary antibody solution was removed and the PVDF membrane washed 3 times in TBST for 5 min. Exposure to the secondary antibody HRP-goat anti-rabbit IgG (H + L) conjugate (horseradish peroxidase coupled; Zymed, Cat no. 81–6120) followed for 2 h at room temperature. After washing 3× for 5 min with TBST, the PVDF membrane was washed twice with TBS and then incubated for 5 min with the chemoluminescent agent (Millipore, Cat no. WBKLS0500). Immediately after this, the chemoluminescent agent was removed and the PVDF membrane was analyzed using a digital imaging system (G:Box, Syngene, MD, USA). After recording, the PVDF membrane was stripped of the antibodies by incubating for 5 min at room temperature with a Western blot stipping buffer (Thermo Scientific, Cat no. 46430). After washing the membrane in TBST, the incubation with the next primary antibody followed (E-Selectin, 1:2000, Abcam, Cat no. ab18981) and the procedure of overnight incubation, secondary antibody incubation and imaging was repeated. To evaluate differences in protein levels, chemiluminosity readings of target proteins were divided by chemiluminosity readings of reference proteins from the same sample. Relative expression levels were compared between diabetic and non-diabetic samples.

Statistics
Data are presented as mean ± standard deviation (SD) for normally distributed data and as mean [interquartile range] when non-normally distributed. Normality was assessed using the Shapiro-Wilk test and the D’Agostino and Pearson Omnibus normality tests. Differences in variances of normally distributed data were assessed using Levene’s test. Differences between two groups were either assessed using a student’s t-test (normally distributed data) including Welch correction in case of unequal variances or Mann–Whitney test (non-normally distributed data). Statistical significance was defined as p < 0.05.


Results
Animal body weight and blood glucose levels
All heterozygous male Akita mice had blood glucose levels ≥13.3 mmol/l from 4 weeks of age. At the time of analysis, mice 22 weeks of age had a body weight of 36.0 ± 2.8 g and 24.5 ± 2.8 g for non-diabetic and diabetic mice respectively (p < 0.0001). Mean blood glucose at 22 weeks of age was 8.9 [7.8-10.2] mmol/l in non-diabetic and 33.4 [28.2-33.4] mmol/l in diabetic animals (p < 0.0001, Figure 1).[image: A12933_2013_Article_796_Fig1_HTML.jpg]
Figure 1Body weight and blood glucose levels. Body weight (A) and blood glucose levels (B) in non-diabetic (control) and diabetic mice at 22 weeks of age (18 weeks of diabetes). Asterisk (*) denotes statistical significance (p < 0.05).





Cell numbers in the bone marrow
Overall an absolute number of 3.33 [2.93-3.98] × 107 nucleated cells were isolated from the BM of each mouse. On average, 5.4 ± 2.3% of the BM nucleated cells were Lin-/VEGF-R2+ cells and 82.3 ± 4.4% were Lin+. The remaining Lin-/VEGF-R2- cells made up ~12%. While in non-diabetic mice 9.37 [8.61-10.75] × 105 cells/g body weight were isolated, from diabetic mice 1.37 [1.10-1.69] × 106 cells/g body weight could be obtained (p < 0.0001). Similarly, the number of Lin-/VEGF-R2+ EPCs in the BM was significantly greater in diabetic than non-diabetic animals after adjusting for body weight: 7.56 [6.20-8.37] × 104 cells/g body weight vs. 4.24 [3.44-5.08] × 104 cells/g body weight (p < 0.0001). There were 1.17 [0.94-1.39] × 106 Lin+ cells/g body weight in diabetic animals and 7.58 [6.85-8.71] × 105 Lin+ cells/g body weight in non-diabetic animals (p = 0.074).

RNA quality and quantity
From the Lin+ fraction, 253.5 ± 117.3 ng/μl RNA could be isolated from diabetic animals and 234.0 ± 98.1 ng/μl RNA from non-diabetic animals (p = 0.64). The Lin-/VEGF-R2+ EPCs fraction yielded 135.3 ± 68.1 ng/μl RNA from diabetic mice and 88.0 ± 53.3 ng/μl RNA from non-diabetic mice (p = 0.05). The integrity of RNA, expressed as RNA quality indicator (RQI) was ≥7 in all samples, indicating intact RNA (see BioRad tech note 5761 Rev B;http://​www.​biorad.​com).

Gene expression changes
Of the 35 genes studied, HSPD1, SDF-1 and SELE showed significant changes between non-diabetic and diabetic Lin-/VEGF-R2+ EPCs. While SDF-1 was down regulated about 0.3-fold, SELE was up regulated 2.4-fold in diabetic compared to non-diabetic Lin-/VEGF-R2+ EPCs. No significant changes in SDF-1 and SELE expression were found between non-diabetic and diabetic Lin+ cells, whereas HSPD1 showed a significant change and a similar fold-change in the diabetic Lin+ cells compared to the non-diabetic Lin+ cells. Therefore, we considered that the differential expression of SDF-1 and SELE genes was specific for Lin-/VEGF-R2+ EPCs. There was a small non-significant increase in the expression of CXCR4 between non-diabetic and diabetic Lin-/VEGF-R2+ EPCs. HIF1A and Tie2 were significantly differentially expressed between diabetic Lin+ cells and non-diabetic Lin+ cells only. Unfortunately, no analysis could be performed for 6 genes including CAV1, eNOS, CLDN5, NANOG, OCLN and BDNF due to CT values ≥35. It is accepted that CT values of 35 or higher represent detection of single molecules in the sample, these readings are therefore considered noise, hence are not reliable expression values and should not be analysed[34–36]. A detailed overview of the results of the gene-expression analysis is shown in Table 1.Table 1
                          Overview of the RT-PCR analysis
                        


	 	Diabetic lin+vs. Non-diabetic lin+
	Diabetic EPC vs. Non-diabetic EPC

	Gene
	Fold-change
	95% CI of fold-change
	p-value
	Fold-change
	95% CI of fold-change
	p-value

	
                              AKT
                            
	1.04
	(0.84, 1.24)
	0.7622
	0.34
	(0.00, 1.16)
	0.9111

	
                              BDNF
                            
	-
	-
	-
	-
	-
	-

	
                              CASP9
                            
	0.77
	(0.54, 1.00)
	0.1172
	0.79
	(0.55, 1.03)
	0.1151

	
                              CAV1
                            
	-
	-
	-
	-
	-
	-

	
                              CDH5
                            
	0.84
	(0.62, 1.07)
	0.1977
	0.81
	(0.30, 1.32)
	0.8824

	
                              CLDN5
                            
	-
	-
	-
	-
	-
	-

	
                              CXCR4
                            
	0.73
	(0.50, 0.96)
	0.0800
	0.80
	(0.54, 1.06)
	0.1993

	
                              eNOS
                            
	-
	-
	-
	-
	-
	-

	
                              EPO
                            
	1.06
	(0.62, 1.51)
	0.8700
	1.16
	(0.68, 1.64)
	0.5543

	
                              EPO-R
                            
	1.21
	(0.80, 1.61)
	0.1860
	0.90
	(0.68, 1.13)
	0.5005

	
                              FGF1
                            
	0.73
	(0.08, 1.38)
	0.3329
	0.76
	(0.17, 1.35)
	0.2288

	
                              FN1
                            
	1.24
	(0.72, 1.77)
	0.5181
	1.62
	(0.94, 2.29)
	0.0628

	
                              GATA2
                            
	0.73
	(0.47, 0.99)
	0.1182
	0.62
	(0.32, 0.93)
	0.0534

	
                              HIF1A
                            
	0.52
	(0.35, 0.69)
	0.0019
	0.78
	(0.35, 1.20)
	0.3114

	
                              HOXA9
                            
	1.29
	(0.90, 1.68)
	0.0890
	0.65
	(0.00, 1.72)
	0.4628

	
                              HSPD1
                            
	0.51
	(0.35, 0.68)
	0.0005
	0.59
	(0.32, 0.86)
	0.0371

	
                              ICAM1
                            
	0.95
	(0.67, 1.22)
	0.6373
	0.70
	(0.39, 1.01)
	0.0997

	
                              IGF1
                            
	0.89
	(0.18, 1.60)
	0.6833
	1.02
	(0.14, 1.90)
	0.9718

	
                              IL11
                            
	1.48
	(0.74, 2.23)
	0.1445
	1.70
	(0.64, 2.77)
	0.1572

	
                              IL6
                            
	1.04
	(0.84, 1.25)
	0.7680
	1.33
	(0.90, 1.75)
	0.1526

	
                              MMP2
                            
	0.88
	(0.38, 1.38)
	0.5561
	0.88
	(0.35, 1.41)
	0.5012

	
                              MMP9
                            
	0.78
	(0.40, 1.17)
	0.4096
	1.05
	(0.76, 1.34)
	0.6447

	
                              NANOG
                            
	-
	-
	-
	-
	-
	-

	
                              OCLN
                            
	-
	-
	-
	-
	-
	-

	
                              P53
                            
	0.92
	(0.79, 1.05)
	0.2973
	1.05
	(0.89, 1.22)
	0.6169

	
                              PIK3R1
                            
	0.80
	(0.56, 1.04)
	0.2263
	0.81
	(0.60, 1.02)
	0.1029

	
                              PKC
                            
	1.04
	(0.77, 1.30)
	0.7644
	1.08
	(0.82, 1.33)
	0.6184

	
                              PTPN11
                            
	0.94
	(0.77, 1.11)
	0.5361
	1.14
	(0.96, 1.32)
	0.1280

	
                              SDF-1
                            
	0.48
	(0.16, 0.80)
	0.0891
	0.32
	(0.04, 0.60)
	0.0149

	
                              SELE
                            
	1.92
	(0.24, 3.60)
	0.1913
	2.41
	(1.42, 3.39)
	0.0005

	
                              Tie2
                            
	2.28
	(0.89, 3.68)
	0.0059
	1.22
	(0.69, 1.75)
	0.5184

	
                              VCAM1
                            
	1.22
	(0.85, 1.60)
	0.2085
	0.62
	(0.25, 0.98)
	0.0687

	
                              VEGFA
                            
	1.08
	(0.00, 3.69)
	0.9400
	1.12
	(0.83, 1.41)
	0.4433

	
                              VEGFR1
                            
	1.03
	(0.70, 1.35)
	0.8699
	0.59
	(0.25, 0.93)
	0.0729

	
                              VEGFR2
                            
	0.56
	(0.26, 0.86)
	0.0721
	0.55
	(0.14, 0.96)
	0.2806


The table indicates the changes in diabetic vs non-diabetic. Down regulated genes have a fold-change < 1 and up regulated genes have a fold-change > 1. Only SDF-1 and SELE show significant changes in the Lin-/VEGF-R2+ EPCs while showing no significant changes in the Lin+ group. HIF1A shows significant change in the Lin+ group but not in the Lin-/VEGF-R2+ EPCs group.




Protein level changes
As only SDF-1 and SELE showed specific changes in Lin-/VEGF-R2+ EPCs in diabetic animals compared with non-diabetics, validation of differential expression at the protein level was performed only for these two genes. For the two genes studied, Western blot showed that only SDF-1 was significantly down regulated in diabetic BM Lin-/VEGF-R2+ EPCs, while no significant change was found for SELE in Western blot analysis (see Figures 2 and3, Table 2).[image: A12933_2013_Article_796_Fig2_HTML.jpg]
Figure 2Relative expression of SDF-1 and SELE in relation to GAPDH expression (reference gene) in Lin
                            -
                          /VEGF-R2
                            +
                          EPCs and Lin
                            +
                          cells. The central bar indicates the mean, whiskers indicates ± 1 SD interval. Asterisk (*) denotes statistical significance (p < 0.05).



[image: A12933_2013_Article_796_Fig3_HTML.jpg]
Figure 3Western blot membrane imaging. Protein expression of SDF-1 and SELE in Lin-/VEGF-R2+ EPCs and Lin+ cells isolated from the BM of non-diabetic and diabetic mice. Specific SDF-1 and SELE signal was detected by probing blots with anti-SDF-1 and anti-SELE antibodies. Two representative samples of a total of eight biological replicates per group are shown. GAPDH was used as loading control. Densitometry analysis was processed to evaluate the expression of SDF-1 and SELE. While Lin+ cells do not show obvious changes, Lin-/VEGF-R2+ EPCs show changes regarding SDF-1 and SELE expression, though only changes observed in SDF-1 are statistically significant.




Table 2
                        Overview of the Western blot analysis
                      


	 	Lin+
	Lin-/VEGF-R2+

	Diabetic vs Non-diabetic
	Diabetic vs Non-diabetic

	Fold-change
	p-value
	Fold-change
	p-value

	
                            SELE
                          
	1.06
	0.676
	1.69
	0.2136

	
                            SDF-1
                          
	0.86
	0.1645
	0.45
	0.0114


Only SDF-1 shows significant changes on the protein level while the up-regulation of SELE is not significant.




Discussion
The present study analyzed differential gene expression in freshly isolated Lin-/VEGF-R2+ EPCs obtained from murine BM in the early stages of diabetes (18 weeks). A total of 35 genes that were previously reported to be involved in EPC mobilization and EPC function[15, 37–57] were tested to see whether the reported diabetes-related changes observed mainly in EPCs from PB of diabetic humans could also be found in BM-derived progenitor cells from mice with early diabetes. There were three main findings. Firstly, the number of Lin-/VEGF-R2+ EPCs/g body weight within the BM was significantly higher in diabetic than non-diabetic animals. Secondly, SDF-1 and SELE were significantly differentially expressed in diabetic Lin-/VEGF-R2+ EPCs but not in diabetic BM Lin+ cells, indicating that the differential expression of SDF-1 and SELE are specific for BM Lin-/VEGF-R2+ EPCs in diabetic mice. The changes observed at the mRNA level were confirmed by Western blot analysis only for SDF-1. Thirdly, 6 genes including CAV1, eNOS, CLDN5, NANOG, OCLN and BDNF showed such low levels of expression that no comparison could be made. These results demonstrate differential expression of one gene (SDF-1) of BM derived progenitor cells in diabetic mice that may contribute to their dysfunctional mobilization from the BM to the PB and that Lin-/VEGF-R2+ EPCs may be very early progenitor cells.
The observation of higher numbers of Lin-/VEGF-R2+ EPCs/g body weight found in diabetic mice compared with non-diabetic animals is consistent with previous findings in a streptozotocin-induced diabetic mouse model[28]. This may indicate that in early stages of diabetes progenitors are "trapped" inside the BM. The reduced expression of SDF-1, one of the key factors involved in EPC mobilization may partially contribute to this finding. Based on the current results, it seems in early diabetes mainly impacts mobilization rather than cell genuine progenitor cell function, which would tally reports that reduction of EPCs in the PB in patients with diabetes is not necessarily coupled to an impaired function[58].
The ability of EPCs to produce SDF-1 has been shown in EPCs isolated from the BM[59] as well as in those isolated from the PB[60]. As EPCs express both SDF-1 and its receptor (CXCR4)[61], an autocrine/paracrine regulation loop for SDF-1[62] within EPCs has been proposed. The functional interaction between SDF-1 and CXCR4 in EPCs within the BM is still unclear. However, recent studies indicate that the interaction between SDF-1 ligand and its CXCR4 receptor appears to play important roles in both mobilization of EPCs from the BM to the PB and EPC maturation[62, 63]. Our finding of down regulation of SDF-1 in diabetic BM Lin-/VEGF-R2+ EPCs indicates that reduced expression of SDF-1 may contribute to the impaired mobilization of Lin-/VEGF-R2+ EPCs observed in diabetic mice. A recent study proposed that high glucose leads to reduced expression of HIF1α which in turn results in a lower level of SDF-1 expression[64]. Others have reported that advanced glycation end products impair SDF-1 production in endothelial progenitor cells in a dose dependent manner[65].
Consistent with these findings of impaired mobilisation of Lin-/VEGF-R2+ EPCs and SDF-1 downregulation are recent reports that SDF-1 is crucial in mobilizing progenitor cells[66] and that direct application of SDF-1 to rats with myocardial infarction reduced the infarction size, probably by stimulating migration of progenitor cells to the heart thereby altering postinfarction vascular remodeling[67]. These recent findings together with the results of the current study emphasize the importance of an early SDF-1 downregulation on cell mobilisation. The interactions between HIF1α expression, regulation of SDF-1 expression and mobilization of BM-EPCs in diabetic vasculopathies warrant further research.
Expression of SELE (CD62E) in circulating EPCs has been described[68, 69]. Several recent studies suggest that SELE expression is a sign of EC or EPC activation[70–72] because unstimulated BM-derived EPCs do not express SELE[73]. The up-regulation of SELE in Lin-/VEGF-R2+ EPCs in diabetic BM may be attributed to increased production of inflammatory cytokines such as interleukin 1 and tumor necrosis factors caused by the diabetic condition[74].
Many studies have linked the EPC function to eNOS, which is considered one of the cardinal enzymes involved in mobilization of EPCs from the BM to the PB as well as maintaining the normal function of EPCs in physiological conditions[41, 42, 75–77]. In the present study we found that eNOS expression in BM Lin-/VEGF-R2+ EPCs was very low. This is in accordance with a number of observations showing that eNOS expression is absent in immature EPCs but its level is increased when EPCs become more mature[43, 44, 77]. The low level of eNOS as well as CAV1, CLDN5, NANOG, OCLN and BDNF expression in BM Lin-/VEGF-R2+ EPCs may indicate that the Lin-/VEGF-R2+ population consists mainly of immature or very early progenitor cells.
Mobilization of progenitor cells from the BM is complex and is based on the interplay of different factors. Results from testing 35 genes for differential expression can explain only partially observed effects of diabetes on BM progenitor cells, which can be considered as a limitation of this study. Further studies may choose broader approaches. Another limitation is that gene expression was tested only at one time point and hence no information on the timing of the SDF-1 expression changes can be monitored or whether other genes may be differentially expressed in the course of diabetes impacting mobilization and/or function.

Conclusions
Overall, the present study indicates that a short period of diabetes is sufficient to trap a significant number of Lin-/VEGF-R2+ EPCs in the BM and to induce reduced expression of SDF-1, which could be one of the predominant reasons to account for the dysfunctional mobilization of Lin-/VEGF-R2+ EPCs from the BM to PB. Future research on regulation of SDF-1 expression in BM-EPCs may lead to novel therapeutic strategies for treatment of early diabetic vasculopathies.

Authors’ information
Save Sight Institute, Sydney Hospital and Sydney Eye Hospital, Central Clinical School, The University of Sydney, Sydney, NSW 2000 Australia.

Acknowledgments
This research was supported by grant number 632839 from the NHMRC, Australian Government. Barthelmes D. was supported by the Swiss National Foundation (SNF/SSMBS) and the Walter and Gertrud Siegenthaler Foundation Zurich, Switzerland.

References
1.
Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS: Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998, 91: 3527-3561.PubMed

2.
Gimbrone MA, Nagel T, Topper JN: Biomechanical activation: an emerging paradigm in endothelial adhesion biology. J Clin Invest. 1997, 100: S61-S65.PubMed

3.
Gimbrone MA, Topper JN, Nagel T, Anderson KR, Garcia-Cardena G: Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci. 2000, 902: 230-239. discussion 239–240CrossRefPubMed

4.
Traub O, Berk BC: Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol. 1998, 18: 677-685. 10.1161/01.ATV.18.5.677.CrossRefPubMed

5.
Hristov M, Zernecke A, Liehn EA, Weber C: Regulation of endothelial progenitor cell homing after arterial injury. Thromb Haemost. 2007, 98: 274-277.PubMed

6.
Miller-Kasprzak E, Jagodzinski PP: Endothelial progenitor cells as a new agent contributing to vascular repair. Arch Immunol Ther Exp (Warsz). 2007, 55: 247-259. 10.1007/s00005-007-0027-5.CrossRef

7.
Ballard VL, Edelberg JM: Targets for regulating angiogenesis in the ageing endothelium. Expert Opin Ther Targets. 2007, 11: 1385-1399. 10.1517/14728222.11.11.1385.CrossRefPubMed

8.
Werner N, Nickenig G: Clinical and therapeutical implications of EPC biology in atherosclerosis. J Cell Mol Med. 2006, 10: 318-332. 10.1111/j.1582-4934.2006.tb00402.x.PubMedCentralCrossRefPubMed

9.
Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM: Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997, 275: 964-967. 10.1126/science.275.5302.964.CrossRefPubMed

10.
Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G: Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005, 353: 999-1007. 10.1056/NEJMoa043814.CrossRefPubMed

11.
Walter DH, Rittig K, Bahlmann FH, Kirchmair R, Silver M, Murayama T, Nishimura H, Losordo DW, Asahara T, Isner JM: Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation. 2002, 105: 3017-3024. 10.1161/01.CIR.0000018166.84319.55.CrossRefPubMed

12.
Werner N, Priller J, Laufs U, Endres M, Bohm M, Dirnagl U, Nickenig G: Bone marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation: effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition. Arterioscler Thromb Vasc Biol. 2002, 22: 1567-1572. 10.1161/01.ATV.0000036417.43987.D8.CrossRefPubMed

13.
Mukai N, Akahori T, Komaki M, Li Q, Kanayasu-Toyoda T, Ishii-Watabe A, Kobayashi A, Yamaguchi T, Abe M, Amagasa T, Morita I: A comparison of the tube forming potentials of early and late endothelial progenitor cells. Exp Cell Res. 2008, 314: 430-440. 10.1016/j.yexcr.2007.11.016.CrossRefPubMed

14.
Fadini GP, Baesso I, Albiero M, Sartore S, Agostini C, Avogaro A: Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis. 2008, 197: 496-503.CrossRefPubMed

15.
Urbich C, Dimmeler S: Endothelial progenitor cells: characterization and role in vascular biology. Circ Res. 2004, 95: 343-353. 10.1161/01.RES.0000137877.89448.78.CrossRefPubMed

16.
Critser PJ, Voytik-Harbin SL, Yoder MC: Isolating and defining cells to engineer human blood vessels. Cell proliferation. 2011, 44 (Suppl 1): 15-21.PubMedCentralCrossRefPubMed

17.
Medina RJ, O’Neill CL, Sweeney M, Guduric-Fuchs J, Gardiner TA, Simpson DA, Stitt AW: Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities. BMC Med Genomics. 2010, 3: 18-10.1186/1755-8794-3-18.PubMedCentralCrossRefPubMed

18.
Barber CL, Iruela-Arispe ML: The ever-elusive endothelial progenitor cell: identities, functions and clinical implications. Pediatric research. 2006, 59: 26R-32R.CrossRefPubMed

19.
Hirschi KK, Ingram DA, Yoder MC: Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2008, 28: 1584-1595. 10.1161/ATVBAHA.107.155960.CrossRefPubMed

20.
Alberti KG, Zimmet PZ: Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998, 15: 539-553. 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S.CrossRefPubMed

21.
Loomans CJ, de Koning EJ, Staal FJ, Rookmaaker MB, Verseyden C, de Boer HC, Verhaar MC, Braam B, Rabelink TJ, van Zonneveld AJ: Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes. 2004, 53: 195-199. 10.2337/diabetes.53.1.195.CrossRefPubMed

22.
Awad O, Jiao C, Ma N, Dunnwald M, Schatteman GC: Obese diabetic mouse environment differentially affects primitive and monocytic endothelial cell progenitors. Stem Cells. 2005, 23: 575-583. 10.1634/stemcells.2004-0185.CrossRefPubMed

23.
Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC: Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation. 2002, 106: 2781-2786. 10.1161/01.CIR.0000039526.42991.93.CrossRefPubMed

24.
Segal MS, Shah R, Afzal A, Perrault CM, Chang K, Schuler A, Beem E, Shaw LC, Li Calzi S, Harrison JK: Nitric oxide cytoskeletal-induced alterations reverse the endothelial progenitor cell migratory defect associated with diabetes. Diabetes. 2006, 55: 102-109. 10.2337/diabetes.55.01.06.db05-0803.CrossRefPubMed

25.
Awad O, Dedkov EI, Jiao C, Bloomer S, Tomanek RJ, Schatteman GC: Differential healing activities of CD34+ and CD14+ endothelial cell progenitors. Arterioscler Thromb Vasc Biol. 2006, 26: 758-764. 10.1161/01.ATV.0000203513.29227.6f.CrossRefPubMed

26.
Schatteman GC: Adult bone marrow-derived hemangioblasts, endothelial cell progenitors, and EPCs. Curr Top Dev Biol. 2004, 64: 141-180.CrossRefPubMed

27.
Ding H, Triggle CR: Endothelial cell dysfunction and the vascular complications associated with type 2 diabetes: assessing the health of the endothelium. Vasc Health Risk Manag. 2005, 1: 55-71. 10.2147/vhrm.1.1.55.58939.PubMedCentralCrossRefPubMed

28.
Barthelmes D, Irhimeh MR, Gillies MC, Karimipour M, Zhou M, Zhu L, Shen WY: Diabetes impairs mobilization of mouse bone marrow-derived Lin-/VEGF-R2+ progenitor cells. Blood Cells Mol Diseases. 2013, http://​dx.​doi.​org/​10.​1016/​j.​bcmd.​2013.​05.​002 In press

29.
Yoshioka M, Kayo T, Ikeda T, Koizumi A: A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes. 1997, 46: 887-894. 10.2337/diab.46.5.887.CrossRefPubMed

30.
Wang J, Takeuchi T, Tanaka S, Kubo SK, Kayo T, Lu D, Takata K, Koizumi A, Izumi T: A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta-cell dysfunction in the Mody mouse. J Clin Invest. 1999, 103: 27-37. 10.1172/JCI4431.PubMedCentralCrossRefPubMed

31.
Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN: Diet-induced type II diabetes in C57BL/6J mice. Diabetes. 1988, 37: 1163-1167. 10.2337/diab.37.9.1163.CrossRefPubMed

32.
Karges W, Pechhold K, Al Dahouk S, Riegger I, Rief M, Wissmann A, Schirmbeck R, Barth C, Boehm BO: Induction of autoimmune diabetes through insulin (but not GAD65) DNA vaccination in nonobese diabetic and in RIP-B7.1 mice. Diabetes. 2002, 51: 3237-3244. 10.2337/diabetes.51.11.3237.CrossRefPubMed

33.
Tang C, Kanter JE, Bornfeldt KE, Leboeuf RC, Oram JF: Diabetes reduces the cholesterol exporter ABCA1 in mouse macrophages and kidneys. J Lipid Res. 2010, 51: 1719-1728. 10.1194/jlr.M003525.PubMedCentralCrossRefPubMed

34.
Karlen Y, McNair A, Perseguers S, Mazza C, Mermod N: Statistical significance of quantitative PCR. BMC Bioinforma. 2007, 8: 131-10.1186/1471-2105-8-131.CrossRef

35.
Jordan JA, Durso MB: Real-time polymerase chain reaction for detecting bacterial DNA directly from blood of neonates being evaluated for sepsis. J Mol Diagn. 2005, 7: 575-581. 10.1016/S1525-1578(10)60590-9.PubMedCentralCrossRefPubMed

36.
Mestdagh P, Feys T, Bernard N, Guenther S, Chen C, Speleman F, Vandesompele J: High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Res. 2008, 36: e143-10.1093/nar/gkn725.PubMedCentralCrossRefPubMed

37.
Lee SP, Youn SW, Cho HJ, Li L, Kim TY, Yook HS, Chung JW, Hur J, Yoon CH, Park KW: Integrin-linked kinase, a hypoxia-responsive molecule, controls postnatal vasculogenesis by recruitment of endothelial progenitor cells to ischemic tissue. Circulation. 2006, 114: 150-159. 10.1161/CIRCULATIONAHA.105.595918.CrossRefPubMed

38.
Urao N, Okigaki M, Yamada H, Aadachi Y, Matsuno K, Matsui A, Matsunaga S, Tateishi K, Nomura T, Takahashi T: Erythropoietin-mobilized endothelial progenitors enhance reendothelialization via Akt-endothelial nitric oxide synthase activation and prevent neointimal hyperplasia. Circ Res. 2006, 98: 1405-1413. 10.1161/01.RES.0000224117.59417.f3.CrossRefPubMed

39.
Heeschen C, Aicher A, Lehmann R, Fichtlscherer S, Vasa M, Urbich C, Mildner-Rihm C, Martin H, Zeiher AM, Dimmeler S: Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood. 2003, 102: 1340-1346. 10.1182/blood-2003-01-0223.CrossRefPubMed

40.
Chong ZZ, Kang JQ, Maiese K: Angiogenesis and plasticity: role of erythropoietin in vascular systems. J Hematother Stem Cell Res. 2002, 11: 863-871. 10.1089/152581602321080529.CrossRefPubMed

41.
Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, Zeiher AM, Dimmeler S: Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med. 2003, 9: 1370-1376. 10.1038/nm948.CrossRefPubMed

42.
Albrecht EW, Stegeman CA, Heeringa P, Henning RH, van Goor H: Protective role of endothelial nitric oxide synthase. J Pathol. 2003, 199: 8-17. 10.1002/path.1250.CrossRefPubMed

43.
Dernbach E, Urbich C, Brandes RP, Hofmann WK, Zeiher AM, Dimmeler S: Antioxidative stress-associated genes in circulating progenitor cells: evidence for enhanced resistance against oxidative stress. Blood. 2004, 104: 3591-3597. 10.1182/blood-2003-12-4103.CrossRefPubMed

44.
He T, Peterson TE, Holmuhamedov EL, Terzic A, Caplice NM, Oberley LW, Katusic ZS: Human endothelial progenitor cells tolerate oxidative stress due to intrinsically high expression of manganese superoxide dismutase. Arterioscler Thromb Vasc Biol. 2004, 24: 2021-2027. 10.1161/01.ATV.0000142810.27849.8f.CrossRefPubMed

45.
Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, Mames RN, Byrne BJ, Vaught T, Spoerri PE, Peck AB, Scott EW: Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med. 2002, 8: 607-612. 10.1038/nm0602-607.CrossRefPubMed

46.
Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F, Nagy JA, Hooper A, Priller J, De Klerck B: Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med. 2002, 8: 831-840.PubMed

47.
Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B, Hicklin DJ, Zhu Z, Bohlen P, Witte L: Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med. 2002, 8: 841-849.PubMedCentralPubMed

48.
Zachary I, Gliki G: Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res. 2001, 49: 568-581. 10.1016/S0008-6363(00)00268-6.CrossRefPubMed

49.
Fong GH, Zhang L, Bryce DM, Peng J: Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development. 1999, 126: 3015-3025.PubMed

50.
Hazra S, Jarajapu YPR, Lee CA, Boulton ME, Kern TS, Ash JD, Grant MB: The Common IL6 Signal-Transducing Receptor, gp130, is Implicated in Endothelial Progenitor Cell Dysfunction in Diabetes. Invest Ophthalmol Vis Sci. 2010, 51: 3154.

51.
Moldenhauer A, Genter G, Lun A, Bal G, Kiesewetter H, Salama A: Hematopoietic progenitor cells and interleukin-stimulated endothelium: expansion and differentiation of myeloid precursors. BMC Immunol. 2008, 9: 56-10.1186/1471-2172-9-56.PubMedCentralCrossRefPubMed

52.
Mobius-Winkler S, Hilberg T, Menzel K, Golla E, Burman A, Schuler G, Adams V: Time-dependent mobilization of circulating progenitor cells during strenuous exercise in healthy individuals. J Appl Physiol. 2009, 107: 1943-1950. 10.1152/japplphysiol.00532.2009.CrossRefPubMed

53.
Humpert PM, Djuric Z, Zeuge U, Oikonomou D, Seregin Y, Laine K, Eckstein V, Nawroth PP, Bierhaus A: Insulin stimulates the clonogenic potential of angiogenic endothelial progenitor cells by IGF-1 receptor-dependent signaling. Mol Med. 2008, 14: 301-308.PubMedCentralCrossRefPubMed

54.
Fleissner F, Thum T: The IGF-1 receptor as a therapeutic target to improve endothelial progenitor cell function. Mol Med. 2008, 14: 235-237.PubMedCentralCrossRefPubMed

55.
Li X, Xu B: HMG-CoA reductase inhibitor regulates endothelial progenitor function through the phosphatidylinositol 3′-kinase/AKT signal transduction pathway. Appl Biochem Biotechnol. 2009, 157: 545-553. 10.1007/s12010-008-8263-7.CrossRefPubMed

56.
Ackah E, Yu J, Zoellner S, Iwakiri Y, Skurk C, Shibata R, Ouchi N, Easton RM, Galasso G, Birnbaum MJ: Akt1/protein kinase Balpha is critical for ischemic and VEGF-mediated angiogenesis. J Clin Invest. 2005, 115: 2119-2127. 10.1172/JCI24726.PubMedCentralCrossRefPubMed

57.
Chen Q, Dong L, Wang L, Kang L, Xu B: Advanced glycation end products impair function of late endothelial progenitor cells through effects on protein kinase Akt and cyclooxygenase-2. Biochem Biophys Res Commun. 2009, 381: 192-197. 10.1016/j.bbrc.2009.02.040.CrossRefPubMed

58.
Fadini GP, Sartore S, Baesso I, Lenzi M, Agostini C, Tiengo A, Avogaro A: Endothelial progenitor cells and the diabetic paradox. Diabetes Care. 2006, 29: 714-716. 10.2337/diacare.29.03.06.dc05-1834.CrossRefPubMed

59.
Yun HJ, Jo DY: Production of stromal cell-derived factor-1 (SDF-1) and expression of CXCR4 in human bone marrow endothelial cells. J Korean Med Sci. 2003, 18: 679-685.PubMedCentralCrossRefPubMed

60.
Urbich C, Aicher A, Heeschen C, Dernbach E, Hofmann WK, Zeiher AM, Dimmeler S: Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol. 2005, 39: 733-742. 10.1016/j.yjmcc.2005.07.003.CrossRefPubMed

61.
Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S, Bosch-Marce M, Masuda H, Losordo DW, Isner JM, Asahara T: Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation. 2003, 107: 1322-1328. 10.1161/01.CIR.0000055313.77510.22.CrossRefPubMed

62.
Yin Y, Huang L, Zhao X, Fang Y, Yu S, Zhao J, Cui B: AMD3100 mobilizes endothelial progenitor cells in mice, but inhibits its biological functions by blocking an autocrine/paracrine regulatory loop of stromal cell derived factor-1 in vitro. J Cardiovasc Pharmacol. 2007, 50: 61-67. 10.1097/FJC.0b013e3180587e4d.CrossRefPubMed

63.
De Falco E, Avitabile D, Totta P, Straino S, Spallotta F, Cencioni C, Torella AR, Rizzi R, Porcelli D, Zacheo A: Altered SDF-1-mediated differentiation of bone marrow-derived endothelial progenitor cells in diabetes mellitus. J Cell Mol Med. 2009, 13: 3405-3414. 10.1111/j.1582-4934.2008.00655.x.PubMedCentralCrossRefPubMed

64.
Thangarajah H, Yao D, Chang EI, Shi Y, Jazayeri L, Vial IN, Galiano RD, Du XL, Grogan R, Galvez MG: The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci USA. 2009, 106: 13505-13510. 10.1073/pnas.0906670106.PubMedCentralCrossRefPubMed

65.
Li H, Zhang X, Guan X, Cui X, Wang Y, Chu H, Cheng M: Advanced glycation end products impair the migration, adhesion and secretion potentials of late endothelial progenitor cells. Cardiovasc Diabetol. 2012, 11: 46-10.1186/1475-2840-11-46.PubMedCentralCrossRefPubMed

66.
Huang PH, Chen JW, Lin CP, Chen YH, Wang CH, Leu HB, Lin SJ: Far infra-red therapy promotes ischemia-induced angiogenesis in diabetic mice and restores high glucose-suppressed endothelial progenitor cell functions. Cardiovasc Diabetol. 2012, 11: 99-10.1186/1475-2840-11-99.PubMedCentralCrossRefPubMed

67.
Davidson SM, Selvaraj P, He D, Boi-Doku C, Yellon RL, Vicencio JM, Yellon DM: Remote ischaemic preconditioning involves signalling through the SDF-1alpha/CXCR4 signalling axis. Basic Res Cardiol. 2013, 108: 377.CrossRefPubMed

68.
Chen MC, Yip HK, Chen CJ, Yang CH, Wu CJ, Cheng CI, Chen YH, Chai HT, Lee CP, Chang HW: No age-related change in circulating endothelial progenitor cells in healthy subjects. Int Heart J. 2006, 47: 95-105. 10.1536/ihj.47.95.CrossRefPubMed

69.
Janic B, Guo AM, Iskander AS, Varma NR, Scicli AG, Arbab AS: Human cord blood-derived AC133+ progenitor cells preserve endothelial progenitor characteristics after long term in vitro expansion. PLoS One. 2010, 5: e9173-10.1371/journal.pone.0009173.PubMedCentralCrossRefPubMed

70.
Dignat-George F, Boulanger CM: The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol. 2011, 31: 27-33. 10.1161/ATVBAHA.110.218123.CrossRefPubMed

71.
Avci-Adali M, Nolte A, Simon P, Ziemer G, Wendel HP: Porcine EPCs downregulate stem cell markers and upregulate endothelial maturation markers during in vitro cultivation. J Tissue Eng Regen Med. 2009, 3: 512-520. 10.1002/term.189.CrossRefPubMed

72.
Nguyen VA, Furhapter C, Obexer P, Stossel H, Romani N, Sepp N: Endothelial cells from cord blood CD133 + CD34+ progenitors share phenotypic, functional and gene expression profile similarities with lymphatics. J Cell Mol Med. 2009, 13: 522-534. 10.1111/j.1582-4934.2008.00340.x.PubMedCentralCrossRefPubMed

73.
Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM: Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest. 2002, 109: 337-346. 10.1172/JCI0214327.PubMedCentralCrossRefPubMed

74.
Navarro Gonzalez JF, Mora Fernandez C, Muros De Fuentes M, Garcia Perez J: Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol. 2011, 7: 327-340. 10.1038/nrneph.2011.51.CrossRefPubMed

75.
Urbich C, Reissner A, Chavakis E, Dernbach E, Haendeler J, Fleming I, Zeiher AM, Kaszkin M, Dimmeler S: Dephosphorylation of endothelial nitric oxide synthase contributes to the anti-angiogenic effects of endostatin. Faseb J. 2002, 16: 706-708.PubMed

76.
Gallagher KA, Liu ZJ, Xiao M, Chen H, Goldstein LJ, Buerk DG, Nedeau A, Thom SR, Velazquez OC: Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J clin investig. 2007, 117: 1249-1259. 10.1172/JCI29710.PubMedCentralCrossRefPubMed

77.
Thum T, Fraccarollo D, Galuppo P, Tsikas D, Frantz S, Ertl G, Bauersachs J: Bone marrow molecular alterations after myocardial infarction: impact on endothelial progenitor cells. Cardiovasc Res. 2006, 70: 50-60. 10.1016/j.cardiores.2006.01.002.CrossRefPubMed



Competing interests
The authors confirm that there are no competing interests.

Authors’ contributions
DB participated in the design of the study, participated in animal work, BM collection, cells, RNA and protein isolation, RT-PCR, WB, statistical analysis and drafted the manuscript. LZ participated in RT-PCR and WB. WS and MCG conceived of the study, and participated in its design and helped to draft the manuscript. MRI conceived of the study, participated in its design, participated in animal work, BM collection, cells isolation, statistical analysis and helped to draft the manuscript. All authors read and approved the final manuscript.


OEBPS/sidebar.gif





OEBPS/A12933_2013_Article_796_Fig3_HTML.jpg
diabetic non-diabetic

& SDF-1

L

g SELE

£ GAPDH
SDF-1

5 SELE

GAPDH





OEBPS/contact.gif





OEBPS/A12933_2013_Article_796_Fig1_HTML.jpg
>

boay weight (g)

D
o
3

w
o
N

N
o
N

-
o
A

o

Body weignht

v L
Control Diabetic
groups

[o9)

blood glucose (mmoll/l)

Blood glucose

g

===

Control

groups

Diabetic





OEBPS/A12933_2013_Article_796_Fig2_HTML.jpg
Relative expression

Relative expression

0.3 1

0.2 1

0.1 1

Lin7/VEGF-R2* progenitor cells
SDF-1/ GAPDH

—I
——

0.0

0.3 1

0.2 1

0.1

Non-diabetic Diabetic
(Control)
Groups

Lin* cells
SDF-1/ GAPDH

+ =

0.0

Non-diabetic Diabetic
(Control)
Groups

Relative expression

Relative expression

0.6 1

0.4

0.2 1

0.0

Lin7/VEGF-R2" progenitor cells
SELE / GAPDH

-1

0.3 1

0.2 1

0.1

0.0

Non-éiabetic
(Control)

Groups

Lin* cells
SELE / GAPDH

T +

Diat;etic

Non-diabetic

(Control)

Groups

Diabetic





